forked from mrphys/HyperSLICE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
220 lines (191 loc) · 8.08 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wednesday May 10 10:11:42 2023
Example Code for training an Image Deep Artifact Suppression network (FastDVDnet) for interactive MRI
Methods details in :
HyperSLICE: HyperBand optimised Spiral for Low-latency Interactive Cardiac Examination, (2023)
Trained from flower image dataset.
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
@author: Dr. Olivier Jaubert
"""
import os
import numpy as np
import tensorflow as tf
try:
physical_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
print('running on CPU')
import tensorflow_mri as tfmri
import random
#import matplotlib.pyplot as plt
import datetime
import pathlib
# Local imports (works if you are in project folder)
import model.layers as layers
import utils.preprocessing_natural_images as preproc_filename_2_kspace
import utils.preprocessing_trajectory_gen as preproc_traj
import utils.preprocessing_fastdvdnet_noselect as preproc_fastdvdnet
import utils.preprocessing_rolling_fastdvdnet as preproc_roll
import utils.display_function_fastdvdnet as display_func
#Set seed for all packages
seed_value=1
random.seed(seed_value)
np.random.seed(seed_value)
tf.random.set_seed(seed_value)
("")
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
archive = tf.keras.utils.get_file(origin=dataset_url, extract=True)
data_dir = pathlib.Path(archive).with_suffix('')
#Configuration
learning_rate=0.0001
config_traj=preproc_traj.config_optimized_traj()
config_preproc=preproc_fastdvdnet.config_base_preproc()
config_natural_images={'base_resolution':config_preproc['base_resolution'],'phases':config_preproc['phases'],'num_coils':10,'addmotion':1}
config={'experiment_path': 'Training_folder',
'experiment_name': 'Test_FastDVDnet',
'split' : [0.7,0.15,0.15], #train, val, test
'split_mode': 'noshuffle', #noshuffle or random
'learning_rate': learning_rate,
'optimizer': tf.keras.optimizers.Adam(learning_rate=learning_rate,clipnorm=1),
'epochs':200,
'loss': tfmri.losses.StructuralSimilarityLoss(rank=2),
'metrics':[tfmri.metrics.PeakSignalToNoiseRatio(rank=2),
tfmri.metrics.StructuralSimilarity(rank=2)]}
config_model={'scales': 3,
'block_depth': 2,
'base_filters': 32,
'kernel_size': 3,
'use_deconv': 'PixelShuffle',
'rank': 2,
'activation': tf.keras.activations.relu,
'out_channels': 1,
'kernel_initializer': tf.keras.initializers.HeUniform(seed=1),
'time_distributed': False}
# Read files and split data
train_files=[]
val_files=[]
test_files=[]
sorted_files=[x for x in sorted(list(map(str,data_dir.glob('roses/*'))))]
n=len(sorted_files); ntrain=int(config['split'][0]*n); nval=int(config['split'][1]*n); ntest=int(np.ceil(config['split'][2]*n))
train_files=sorted_files[:ntrain]
val_files=sorted_files[ntrain:ntrain+nval]
test_files=sorted_files[ntrain+nval:ntrain+nval+ntest]
# Shuffle files.
random.shuffle(train_files)
random.shuffle(val_files)
random.shuffle(test_files)
print('Total/Train/Val/Test:',len(train_files)+len(val_files)+len(test_files),
'/',len(train_files),'/',len(val_files),'/',len(test_files),'leftovers:',n-ntrain-nval-ntest)
#Define Preprocessing run once to get input shapes
preproc_natural_image=preproc_filename_2_kspace.preprocessing_fn(**config_natural_images)
traj_function=preproc_traj.create_traj_fn(**config_traj)
preproc_function=preproc_fastdvdnet.preprocessing_fn(**config_preproc)
roll_function=preproc_roll.preprocessing_fn()
# Run Preprocessing once on case [1]
kspace=preproc_natural_image(train_files[1])
ds=tf.data.Dataset.from_tensors(kspace)
image=traj_function(ds)
for element in image:
inputs_temp,gt_temp=preproc_function(element)
inputs,gt=roll_function(inputs_temp,gt_temp)
#Creating Tensorflow dataset
# Create datasets.
datasets=[train_files,val_files,test_files]
dataset_withtransforms=[]
for pp,dataset in enumerate(datasets):
dataset = tf.data.Dataset.from_tensor_slices(
tf.convert_to_tensor(list(map(str, dataset)), dtype=tf.string))
#dataset =tf.data.Dataset.from_tensor_slices(list(map(str, dataset))).filter(lambda x: tf.strings.regex_full_match(x,'.*png'))
dataset=dataset.map(preproc_natural_image,num_parallel_calls=1)
dataset = dataset.apply(traj_function)
dataset=dataset.map(preproc_function,num_parallel_calls=1)
if pp==0:
dataset=dataset.cache()
dataset=dataset.map(roll_function,num_parallel_calls=1)
dataset=dataset.shuffle(buffer_size=8,seed=1)
if pp>0:
dataset=dataset.cache()
dataset=dataset.batch(1,drop_remainder=True)
dataset=dataset.prefetch(buffer_size=-1)
dataset_withtransforms.append(dataset)
#Defining Paths
path = config['experiment_path']
exp_name = os.path.splitext(os.path.basename(config['experiment_name']))[0]
exp_name += '_' + datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
exp_dir = os.path.join(path, exp_name)
#Define and compile Model
image_inputs= tf.keras.Input(inputs.shape)
outputs=layers.FastDVDNet(**config_model)(image_inputs)
model=tf.keras.Model(inputs=image_inputs,outputs=outputs)
model.compile(optimizer=config['optimizer'],
loss=config['loss'],
metrics=config['metrics'] or None,
run_eagerly=False)
model.summary()
#Define Callbacks
callbacks=[]
checkpoint_filepath=os.path.join(exp_dir,'ckpt/saved_model')
callbacks.append(tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor='val_loss',
mode='min',
save_weights_only=False,
save_best_only=True))
callbacks.append(tf.keras.callbacks.TensorBoard(log_dir=os.path.join(exp_dir,'logs')))
display_fn=display_func.display_fn(complex_part='abs',selected_image=-1)
callbacks.append(tfmri.callbacks.TensorBoardImages(log_dir=os.path.join(exp_dir,'logs'),
max_images=2,x= dataset_withtransforms[1],display_fn=display_fn))
# Tensorboard callbacks accessible through: $ tensorboard --logdir expir
#Train the model (200 epochs ~ 1h30)
history=model.fit(dataset_withtransforms[0],
epochs=config['epochs'],
verbose=1,
callbacks=callbacks,
validation_data=dataset_withtransforms[1])
#Save Configuration
import json
global_config={**config,**config_traj,**config_preproc,**config_model}
for key in global_config.keys():
global_config[key]=str(global_config[key])
filename = os.path.join(exp_dir,'config.json')
with open(filename, 'w') as f:
f.write(json.dumps(global_config))
#Evaluate Best Model On Test Set
checkpoint_filepath=os.path.join(exp_dir,'ckpt/saved_model')
model.load_weights(checkpoint_filepath)
result = model.evaluate(dataset_withtransforms[2])
results_dict=dict(zip(model.metrics_names, result))
filename = os.path.join(exp_dir,'results.json')
with open(filename, 'w') as f:
f.write(json.dumps(results_dict))
#Inference experiment (change of orientation)
#Preproc series 1
kspace=preproc_natural_image(test_files[0])
ds=tf.data.Dataset.from_tensors(kspace)
image=traj_function(ds)
for element in image:
inputs_temp,gt_temp=preproc_function(element)
#Preproc series 2
kspace2=preproc_natural_image(test_files[2])
ds2=tf.data.Dataset.from_tensors(kspace2)
image2=traj_function(ds2)
for element in image2:
inputs_temp2,gt_temp2=preproc_function(element)
#Run model on buffered 5 image in a series
inputs=np.concatenate((inputs_temp,inputs_temp2),axis=2)
gts=np.concatenate((gt_temp,gt_temp2),axis=2)
buffer=[]
output=[]
for pp in range(inputs.shape[-1]):
buffer.append(inputs[:,:,pp])
if pp>3:
model_input=np.expand_dims(np.stack(buffer,axis=-1),axis=0)
output.append(model(model_input))
buffer=buffer[1:]
output=np.concatenate(output,axis=-1)
plot_image=np.concatenate((inputs[:,:,4:],gts[:,:,4:],output[0,...]),axis=0)
#From Left to Right: Input, Ground Truth, Reconstructed -> Saves mp4 in expdir.
savepath=os.path.join(exp_dir,'video_orientation_change')
display_func.plotVid(np.transpose(plot_image,axes=[1,0,2]),interval=55,savepath=savepath)