-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmaximum-sum-with-at-most-k-elements.py
49 lines (44 loc) · 1.67 KB
/
maximum-sum-with-at-most-k-elements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Time: O(n * m)
# Space: O(1)
import random
# greedy, quick select
class Solution(object):
def maxSum(self, grid, limits, k):
"""
:type grid: List[List[int]]
:type limits: List[int]
:type k: int
:rtype: int
"""
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = random.randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
candidates = []
for i in xrange(len(grid)):
cnt = min(k, limits[i])
nth_element(grid[i], cnt-1, lambda a, b: a > b)
for j in xrange(cnt):
candidates.append(grid[i][j])
nth_element(candidates, k-1, lambda a, b: a > b)
return sum(candidates[i] for i in xrange(k))