You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am trying to reproduce the MSDNet with dynamic evaluation curve of Figure 7b of the paper (budgeted batch classification for CIFAR-100).
I am training the MSDNet as mentioned in the README file.
I then evaluate by: python main.py --data-root /path/to/cifar100/ --data cifar100 --save /path/to/out/ --arch msdnet --batch-size 64 --epochs 300 --nBlocks 5 --stepmode lin_grow --step 1 --base 1 --nChannels 16 --evalmode dynamic --evaluate-from /path/to/out/save_models/checkpoint_299.pth.tar --use-valid -j 1 --gpu 0
Output log
building network of steps:
[1, 2, 3, 4, 5] 15
********************** Block 1 **********************| inScales 3 outScales 3 inChannels 16 outChannels 6 |********************** Block 2 **********************| inScales 3 outScales 3 inChannels 22 outChannels 6 || inScales 3 outScales 3 inChannels 28 outChannels 6 |********************** Block 3 **********************| inScales 3 outScales 3 inChannels 34 outChannels 6 || inScales 3 outScales 3 inChannels 40 outChannels 6 || inScales 3 outScales 2 inChannels 46 outChannels 6 || Transition layer inserted! (max), inChannels 52, outChannels 26 |********************** Block 4 **********************| inScales 2 outScales 2 inChannels 26 outChannels 6 || inScales 2 outScales 2 inChannels 32 outChannels 6 || inScales 2 outScales 2 inChannels 38 outChannels 6 || inScales 2 outScales 2 inChannels 44 outChannels 6 |********************** Block 5 **********************| inScales 2 outScales 1 inChannels 50 outChannels 6 || Transition layer inserted! (max), inChannels 56, outChannels 28 || inScales 1 outScales 1 inChannels 28 outChannels 6 || inScales 1 outScales 1 inChannels 34 outChannels 6 || inScales 1 outScales 1 inChannels 40 outChannels 6 || inScales 1 outScales 1 inChannels 46 outChannels 6 |
---------------------
FLOPs: 6.86M, Params: 0.30M
---------------------
FLOPs: 14.35M, Params: 0.65M
---------------------
FLOPs: 27.54M, Params: 1.02M
---------------------
FLOPs: 41.71M, Params: 1.49M
---------------------
FLOPs: 58.48M, Params: 2.08M
building network of steps:
[1, 2, 3, 4, 5] 15
********************** Block 1 **********************| inScales 3 outScales 3 inChannels 16 outChannels 6 |********************** Block 2 **********************| inScales 3 outScales 3 inChannels 22 outChannels 6 || inScales 3 outScales 3 inChannels 28 outChannels 6 |********************** Block 3 **********************| inScales 3 outScales 3 inChannels 34 outChannels 6 || inScales 3 outScales 3 inChannels 40 outChannels 6 || inScales 3 outScales 2 inChannels 46 outChannels 6 || Transition layer inserted! (max), inChannels 52, outChannels 26 |********************** Block 4 **********************| inScales 2 outScales 2 inChannels 26 outChannels 6 || inScales 2 outScales 2 inChannels 32 outChannels 6 || inScales 2 outScales 2 inChannels 38 outChannels 6 || inScales 2 outScales 2 inChannels 44 outChannels 6 |********************** Block 5 **********************| inScales 2 outScales 1 inChannels 50 outChannels 6 || Transition layer inserted! (max), inChannels 56, outChannels 28 || inScales 1 outScales 1 inChannels 28 outChannels 6 || inScales 1 outScales 1 inChannels 34 outChannels 6 || inScales 1 outScales 1 inChannels 40 outChannels 6 || inScales 1 outScales 1 inChannels 46 outChannels 6 |!!!!!! Load train_set_index !!!!!!*********************
/home/damaskin/MSDNet-PyTorch/adaptive_inference.py:28: UserWarning: torch.range is deprecated in favor of torch.arange and will be removed in 0.5. Note that arange generates values in [start; end), not [start; end].
probs = torch.exp(torch.log(_p) * torch.range(1, args.nBlocks))
valid acc: 59.020, test acc: 61.500, test flops: 7.09M
*********************
valid acc: 59.960, test acc: 62.080, test flops: 7.44M
*********************
valid acc: 60.700, test acc: 62.870, test flops: 7.90M
*********************
valid acc: 61.660, test acc: 63.500, test flops: 8.36M
*********************
valid acc: 62.700, test acc: 64.050, test flops: 8.93M
*********************
valid acc: 63.900, test acc: 64.850, test flops: 9.66M
*********************
valid acc: 65.040, test acc: 65.670, test flops: 10.53M
*********************
valid acc: 65.760, test acc: 66.400, test flops: 11.32M
*********************
valid acc: 66.920, test acc: 67.130, test flops: 12.34M
*********************
valid acc: 67.740, test acc: 67.800, test flops: 13.32M
*********************
valid acc: 68.600, test acc: 68.560, test flops: 14.48M
*********************
valid acc: 69.500, test acc: 69.330, test flops: 15.67M
*********************
valid acc: 69.880, test acc: 69.980, test flops: 16.88M
*********************
valid acc: 70.420, test acc: 70.310, test flops: 18.25M
*********************
valid acc: 70.820, test acc: 70.770, test flops: 19.61M
*********************
valid acc: 71.460, test acc: 71.150, test flops: 20.90M
*********************
valid acc: 71.840, test acc: 71.530, test flops: 22.28M
*********************
valid acc: 72.260, test acc: 71.970, test flops: 23.62M
*********************
valid acc: 72.860, test acc: 72.150, test flops: 25.03M
*********************
valid acc: 72.880, test acc: 72.360, test flops: 26.24M
*********************
valid acc: 72.880, test acc: 72.530, test flops: 27.46M
*********************
valid acc: 72.960, test acc: 72.610, test flops: 28.95M
*********************
valid acc: 73.080, test acc: 72.650, test flops: 30.14M
*********************
valid acc: 72.840, test acc: 72.900, test flops: 31.26M
*********************
valid acc: 72.780, test acc: 72.920, test flops: 32.32M
*********************
valid acc: 72.840, test acc: 73.070, test flops: 33.44M
*********************
valid acc: 72.640, test acc: 73.020, test flops: 34.26M
*********************
valid acc: 72.720, test acc: 73.160, test flops: 35.17M
*********************
valid acc: 72.740, test acc: 72.940, test flops: 36.09M
*********************
valid acc: 72.660, test acc: 73.030, test flops: 36.87M
*********************
valid acc: 72.700, test acc: 72.980, test flops: 37.61M
*********************
valid acc: 72.600, test acc: 72.920, test flops: 38.28M
*********************
valid acc: 72.580, test acc: 72.870, test flops: 39.01M
*********************
valid acc: 72.460, test acc: 72.680, test flops: 39.59M
*********************
valid acc: 72.400, test acc: 72.660, test flops: 40.20M
*********************
valid acc: 72.300, test acc: 72.660, test flops: 40.80M
*********************
valid acc: 72.220, test acc: 72.620, test flops: 41.28M
*********************
valid acc: 72.160, test acc: 72.580, test flops: 41.80M
*********************
valid acc: 72.160, test acc: 72.580, test flops: 42.16M
The final [test accuracy, budget] pair is [72.58, 0.4 * 10^8] which is not consistent with the results of Figure 7b (as it should have been [~74, 0.4 * 10^8]).
What are the parameters of the 3 MSDNets used in Figure 7b ?
The text was updated successfully, but these errors were encountered:
I am trying to reproduce the
MSDNet with dynamic evaluation
curve of Figure 7b of the paper (budgeted batch classification for CIFAR-100).I am training the MSDNet as mentioned in the README file.
I then evaluate by:
python main.py --data-root /path/to/cifar100/ --data cifar100 --save /path/to/out/ --arch msdnet --batch-size 64 --epochs 300 --nBlocks 5 --stepmode lin_grow --step 1 --base 1 --nChannels 16 --evalmode dynamic --evaluate-from /path/to/out/save_models/checkpoint_299.pth.tar --use-valid -j 1 --gpu 0
Output log
The final [test accuracy, budget] pair is [72.58, 0.4 * 10^8] which is not consistent with the results of Figure 7b (as it should have been [~74, 0.4 * 10^8]).
What are the parameters of the 3 MSDNets used in Figure 7b ?
The text was updated successfully, but these errors were encountered: