-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
209 lines (170 loc) · 6.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import logging
import os
from functools import lru_cache
from pathlib import Path
import markdown
from dotenv import load_dotenv
from fastapi import FastAPI, Form, HTTPException, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from groq import Groq
from groq.types.chat.chat_completion_message_param import ChatCompletionMessageParam
from models import create_library
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Initialize template system with caching
library = create_library(path=Path(__name__).parent / "templates/courses")
# Initialize conversation history
# TODO Make non-global
conversation_history: dict[str, list[ChatCompletionMessageParam]] = {}
# Add a constant for the model name
GROQ_MODEL = "llama-3.1-8b-instant"
# Convert markdown to HTML with caching
@lru_cache(maxsize=100)
def markdown_to_html(content: str) -> str:
return markdown.markdown(content, extensions=["fenced_code", "tables"])
@app.get("/", response_class=HTMLResponse)
async def root(
request: Request,
course_name: str | None = None,
topic_name: str | None = None,
activity_name: str | None = None,
):
try:
# If all parameters are provided, generate prompt and start chat
if course_name and topic_name and activity_name:
logger.debug("Generating prompt for chat")
initial_prompt = library.generate_prompt(
course_name, topic_name, activity_name
)
# Get the topic text
topic = library.get_topic(course_name, topic_name)
if not topic:
raise ValueError
if initial_prompt:
# Initialize conversation with system prompt
conversation_key = f"{course_name}_{topic_name}_{activity_name}"
conversation_history.update(
{conversation_key: [{"role": "system", "content": initial_prompt}]}
)
# Get first response from AI
messages = conversation_history.get(conversation_key)
if not messages:
raise KeyError
chat_completion = groq_client.chat.completions.create(
messages=messages,
model=GROQ_MODEL,
)
initial_response = chat_completion.choices[0].message.content
# Add AI's response to conversation history
conversation_history[conversation_key].append(
{"role": "assistant", "content": initial_response}
)
return templates.TemplateResponse(
"chat.html",
{
"request": request,
"initial_prompt": initial_response,
"course_name": course_name,
"topic_name": topic_name,
"activity_name": activity_name,
"markdown_to_html": markdown_to_html,
},
)
raise HTTPException(status_code=404, detail="Invalid parameters")
# Get selected course if course_id is provided
selected_course = library.get_course(course_name) if course_name else None
logger.debug(f"Selected course: {selected_course}")
selected_topic = (
library.get_topic(course_name, topic_name)
if course_name and topic_name
else None
)
logger.debug(f"Selected topic: {selected_topic}")
selected_activity = (
library.get_activity(course_name, activity_name)
if course_name and activity_name
else None
)
logger.debug(f"Selected activity: {selected_activity}")
context = {
"request": request,
"courses": library.courses,
"selected_course": selected_course,
"selected_topic": selected_topic,
"selected_activity": selected_activity,
"course_id": course_name,
"topic_id": topic_name,
"activity_id": activity_name,
"markdown_to_html": markdown_to_html,
"template_system": library,
}
logger.debug("Rendering template with context")
return templates.TemplateResponse("select.html", context)
except FileNotFoundError as e:
logger.error(f"File not found error: {str(e)}")
raise HTTPException(status_code=404, detail=str(e))
except Exception as e:
logger.error(f"Unexpected error: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_class=HTMLResponse)
async def chat(
request: Request,
message: str = Form(...),
course_name: str = Form(...),
topic_name: str = Form(...),
activity_name: str = Form(...),
):
try:
logger.debug(f"Received message: {message}")
conversation_key = f"{course_name}_{topic_name}_{activity_name}"
# Initialize conversation history if it doesn't exist
if conversation_key not in conversation_history:
conversation_history[conversation_key] = [
{
"role": "system",
"content": library.generate_prompt(
course_name, topic_name, activity_name
),
}
]
# Add user message to history
conversation_history[conversation_key].append(
{"role": "user", "content": message}
)
# Get chat completion from Groq with max tokens limit
chat_completion = groq_client.chat.completions.create(
messages=conversation_history[conversation_key],
model=GROQ_MODEL,
max_tokens=150, # Reduced token limit
temperature=0.7,
)
# Extract the response
ai_response = chat_completion.choices[0].message.content
# Add AI response to history
conversation_history[conversation_key].append(
{"role": "assistant", "content": ai_response}
)
logger.debug(f"Rendering template with user_message: {message}")
logger.debug(f"Rendering template with ai_response: {ai_response}")
return templates.TemplateResponse(
"chat_messages.html",
{
"request": request,
"user_message": message,
"ai_response": ai_response,
"markdown_to_html": markdown_to_html,
},
)
except Exception as e:
logger.error(f"Chat error: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))