-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg16_cifar10.py
101 lines (77 loc) · 3.08 KB
/
vgg16_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from keras.utils import to_categorical
from keras.datasets import cifar10
import keras.backend as K
from keras.callbacks import ModelCheckpoint, EarlyStopping
import os
from helper import parser
from network import vggnet
from keras.preprocessing.image import ImageDataGenerator
K.set_image_data_format('channels_last')
K.set_learning_phase(1)
def model_path(dataset):
ModelPath = './model/'
if os.path.exists(ModelPath) is False:
os.makedirs(ModelPath)
# 保存的模型位置和名称,名称根据epoch和精度变化
ModelFile = ModelPath + dataset + '-{epoch:03d}-{val_acc:.5f}-{val_loss:.5f}.hdf5'
return ModelFile
def sample_preprocess(x):
# x = x.reshape(x.shape[0], input_size, input_size, input_channel)
x = x.astype('float32') / 255
return x
def train(model, x_train, y_train, x_val, y_val):
datagen_train = ImageDataGenerator(rotation_range=30, width_shift_range=0.2,
height_shift_range=0.2, shear_range=0.2,
zoom_range=0.2, horizontal_flip=True)
train_generator = datagen_train.flow(x_train, y_train, batch_size=32)
# datagen_train.fit(x_train)
# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 设置模型按什么标准进行保存。比如:acc,loss
CP = ModelCheckpoint(ModelFile, monitor='val_acc',
verbose=1, save_best_only=False, mode='auto')
# 设置如果性能不上升,停止学习
ES = EarlyStopping(monitor='val_acc', patience=Patience)
callbacks_list = [CP, ES]
# 训练模型
model.fit_generator(generator=train_generator,
steps_per_epoch=x_train.shape[0] // BATCH_SIZE,
epochs=EPOCH,
callbacks=callbacks_list,
validation_data=(x_val, y_val),
validation_steps=x_val.shape[0] // BATCH_SIZE)
return model
def main():
# 加载数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# class_number = len(np.unique(y_train))
# 数据预处理
x_train = sample_preprocess(x_train)
x_test = sample_preprocess(x_test)
# input('stop')
# 构建模型
y_train = to_categorical(y_train, class_number)
y_test = to_categorical(y_test, class_number)
model = vggnet.VGG16(input_shape=(input_size, input_size, input_channel),
classes=class_number)
model = train(model, x_train, y_train, x_test, y_test)
acc = model.evaluate(x_test, y_test)[1]
# score = model.evaluate(x_test, y_test)
print('Accuracy is {}.'.format(acc))
print('Congratulation! It finished.')
if __name__ == '__main__':
args = parser.define_parser()
BATCH_SIZE = 512
if args.bs:
BATCH_SIZE = args.bs
EPOCH = 300
if args.ep:
EPOCH = args.ep
# 设置多少次不提升,就停止训练
Patience = 50
input_size = 32
input_channel = 3
class_number = 10
dataset = 'cifar-10'
ModelFile = model_path(dataset)
main()