forked from VLKEB/VLKEB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultimodal_edit.py
308 lines (253 loc) · 10.2 KB
/
multimodal_edit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import torch
import types
from statistics import mean
from easyeditor import BaseEditor, MultimodalTrainer, MultimodalEditor
from easyeditor import CaptionDataset, VQADataset
from easyeditor import MENDMultimodalTrainingHparams, SERACMultimodalTrainingHparams, IKEMultimodalHyperParams, MENDMultimodalHparams \
, SERACMultimodalHparams, FTMultimodalHparams
from easyeditor import encode_ike_facts_multimodal
from sentence_transformers import SentenceTransformer
import sys
def print_result(metrics, save_path=None):
rewrite_acc = mean([m['post']['rewrite_acc'].item() for m in metrics])
rephrase_acc = mean([m['post']['rephrase_acc'].item() for m in metrics])
rephrase_image_acc = mean([m['post']['rephrase_image_acc'].item() for m in metrics])
locality_acc = mean([m['post']['locality_acc'].item() for m in metrics])
locality_image_acc = mean([m['post']['locality_image_acc'].item() for m in metrics])
print(f'rewrite_acc: {rewrite_acc}')
print(f'rephrase_acc: {rephrase_acc}')
print(f'rephrase_image_acc: {rephrase_image_acc}')
print(f'locality_acc: {locality_acc}')
print(f'locality_image_acc: {locality_image_acc}')
### portability
if 'portability_acc' in metrics[0]['post']:
portability_acc = mean([m['post']['portability_acc'].item() for m in metrics])
print(f'portability_acc: {portability_acc}')
if save_path is not None:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'w') as f:
f.write(f'rewrite_acc: {rewrite_acc}\n')
f.write(f'rephrase_acc: {rephrase_acc}\n')
f.write(f'rephrase_image_acc: {rephrase_image_acc}\n')
f.write(f'locality_acc: {locality_acc}\n')
f.write(f'locality_image_acc: {locality_image_acc}\n')
#### portability
if 'portability_acc' in metrics[0]['post']:
f.write(f'portability_acc: {portability_acc}\n')
def Generate_Embedding_for_IKE():
hparams = IKEMultimodalHyperParams.from_hparams('hparams/IKE/blip2.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams, no_image=True)
## Generate embedding files for IKE
sentence_model = SentenceTransformer(hparams.sentence_model_name, device=f'cuda:{hparams.device}')
encode_ike_facts_multimodal(sentence_model, train_ds, hparams)
####################### MiniGPT4 ##########################
def train_MEND_MiniGPT4():
hparams = MENDMultimodalTrainingHparams.from_hparams('hparams/TRAINING/MEND/minigpt4.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_MEND_MiniGPT4():
hparams = MENDMultimodalHparams.from_hparams('hparams/MEND/minigpt4.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def train_SERAC_MiniGPT4():
hparams = SERACMultimodalTrainingHparams.from_hparams('hparams/TRAINING/SERAC/minigpt4.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_MiniGPT4():
hparams = SERACMultimodalHparams.from_hparams('hparams/SERAC/minigpt4.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_FT_MiniGPT4():
hparams = FTMultimodalHparams.from_hparams('hparams/FT/minigpt4.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_FT_MiniGPT4_Qformer():
hparams = FTMultimodalHparams.from_hparams('hparams/FT/minigpt4_qformer.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_IKE_MiniGPT4():
hparams = IKEMultimodalHyperParams.from_hparams('hparams/IKE/minigpt4.yaml')
editor = MultimodalEditor.from_hparams(hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
metrics, edited_model, _ = editor.edit_dataset(
ds=eval_ds,
train_ds='train_ds',
keep_original_weight=True
)
print_result(metrics, save_path='results/IKE/MiniGPT4_results_portability.txt')
####################### BLIP2 ##########################
def train_MEND_Blip2OPT():
hparams = MENDMultimodalTrainingHparams.from_hparams('hparams/TRAINING/MEND/blip2.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_MEND_Blip2OPT():
hparams = MENDMultimodalHparams.from_hparams('hparams/MEND/blip2.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def train_SERAC_Blip2OPT():
hparams = SERACMultimodalTrainingHparams.from_hparams('hparams/TRAINING/SERAC/blip2.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_Blip2OPT():
hparams = SERACMultimodalHparams.from_hparams('hparams/SERAC/blip2.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_FT_Blip2OPT():
hparams = FTMultimodalHparams.from_hparams('hparams/FT/blip2.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_FT_Blip2OPT_QFormer():
hparams = FTMultimodalHparams.from_hparams('hparams/FT/blip2_qformer.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_IKE_Blip2OPT():
hparams = IKEMultimodalHyperParams.from_hparams('hparams/IKE/blip2.yaml')
editor = MultimodalEditor.from_hparams(hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
metrics, edited_model, _ = editor.edit_dataset(
ds=eval_ds,
train_ds='train_ds',
keep_original_weight=True
)
print_result(metrics, save_path='results/IKE/Blip2OPT_results_portability.txt')
####################### LLAVA ##########################
def train_MEND_LLaVA():
hparams = MENDMultimodalTrainingHparams.from_hparams('hparams/TRAINING/MEND/llava.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_MEND_LLaVA():
hparams = MENDMultimodalTrainingHparams.from_hparams('hparams/MEND/llava.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def train_SERAC_LLaVA():
hparams = SERACMultimodalTrainingHparams.from_hparams('hparams/TRAINING/SERAC/llava.yaml')
train_ds = CaptionDataset(train_json_path, config=hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=train_ds,
val_set=eval_ds
)
trainer.run()
def test_SERAC_LLaVA():
hparams = SERACMultimodalTrainingHparams.from_hparams('hparams/SERAC/llava.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_FT_LLaVA():
hparams = FTMultimodalHparams.from_hparams('hparams/FT/llava.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_FT_LLaVA_mmproj():
hparams = FTMultimodalHparams.from_hparams('hparams/FT/llava_mmproj.yaml')
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
trainer = MultimodalTrainer(
config=hparams,
train_set=eval_ds,
val_set=eval_ds
)
trainer.run()
def test_IKE_LLaVA():
hparams = IKEMultimodalHyperParams.from_hparams('hparams/IKE/llava.yaml')
editor = MultimodalEditor.from_hparams(hparams)
eval_ds = CaptionDataset(eval_json_path, config=hparams, hop=hop)
metrics, edited_model, _ = editor.edit_dataset(
ds=eval_ds,
train_ds='train_ds',
keep_original_weight=True
)
print_result(metrics, save_path='results/IKE/LLAVA_results_portability.txt')
if __name__ == "__main__":
function_name = sys.argv[1]
hop = sys.argv[2] if len(sys.argv) > 2 else None
train_json_path = 'datasets/train.json'
eval_json_path = 'datasets/eval_multihop.json'
if function_name not in globals() or not callable(globals()[function_name]):
print(f"Error: Function '{function_name}' does not exist.")
sys.exit(1)
globals()[function_name]()