-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test_split.py
54 lines (40 loc) · 1.96 KB
/
train_test_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import random
import shutil
# Set random seed for reproducibility
random.seed(42)
# Define paths
main_folder = '/hpctmp/pbs_dm_stage/access_temp_stage/e1100476/Dataset/retina images/APTOS-2019 dataset/colored_images'
output_folder = '/hpctmp/pbs_dm_stage/access_temp_stage/e1100476/Dataset/retina images/linprobe' # Folder where train and val folders will be created
train_folder = os.path.join(output_folder, 'train')
val_folder = os.path.join(output_folder, 'val')
# Create train and val directories if they don't exist
if not os.path.exists(train_folder):
os.makedirs(train_folder)
if not os.path.exists(val_folder):
os.makedirs(val_folder)
# Get subdirectories (categories)
categories = [d for d in os.listdir(main_folder) if os.path.isdir(os.path.join(main_folder, d))]
for category in categories:
# Paths for category folders in train and val directories
train_category_folder = os.path.join(train_folder, category)
val_category_folder = os.path.join(val_folder, category)
if not os.path.exists(train_category_folder):
os.makedirs(train_category_folder)
if not os.path.exists(val_category_folder):
os.makedirs(val_category_folder)
# Get all image files in the category folder
category_folder = os.path.join(main_folder, category)
images = [f for f in os.listdir(category_folder) if os.path.isfile(os.path.join(category_folder, f))]
# Shuffle and split the images
random.shuffle(images)
split_point = int(0.8 * len(images))
train_images = images[:split_point]
val_images = images[split_point:]
# Move images to train folder
for image in train_images:
shutil.move(os.path.join(category_folder, image), os.path.join(train_category_folder, image))
# Move images to val folder
for image in val_images:
shutil.move(os.path.join(category_folder, image), os.path.join(val_category_folder, image))
print("Dataset split into train and val folders.")