Skip to content

Latest commit

 

History

History
46 lines (36 loc) · 1.34 KB

GLUE_torch_freeze.md

File metadata and controls

46 lines (36 loc) · 1.34 KB

GLUE tasks

Here are the corresponding GLUE scores on BiGS if we freeze token type embeddings in Pytorch.

Experiments

GLUE is made up of a total of 9 different tasks, we finetune BiGS on a single 24G titanrtx.

export TASK_NAME=cola

python run_glue_pytorch_freeze.py \
  --model_name_or_path JunxiongWang/BiGS_128 \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --max_seq_length 128 \
  --per_device_train_batch_size 16 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --overwrite_output_dir \
  --output_dir BiGS_128_$TASK_NAME/
  --ignore_mismatched_sizes \
  --save_total_limit 2 \
  --output_dir BiGS_128_$TASK_NAME/

Those give us the following result

Using pykeops package

Task Metric Result
CoLA Matthews corr 69.37
MRPC Accuracy/F1 80.64/86.36
STS-B Pearson/Spearman corr. 89.10/88.98
RTE Accuracy 69.68

Without pykeops package

Task Metric Result
CoLA Matthews corr 65.46
MRPC Accuracy/F1 81.86/87.29
STS-B Pearson/Spearman corr. 88.96/88.95
RTE Accuracy 69.31