-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathalexnet_normal.py
94 lines (80 loc) · 2.74 KB
/
alexnet_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import tensorflow as tf
from riptide.binary import binary_layers as nn
class alexnet(tf.keras.Model):
def __init__(self, classes=1000):
super(alexnet, self).__init__()
self.conv1 = nn.NormalConv2D(
filters=64,
kernel_size=11,
strides=4,
padding='same',
activation='relu',
use_bias=True)
self.pool1 = nn.NormalMaxPool2D(pool_size=2, strides=2)
self.bn1 = nn.NormalBatchNormalization(center=False, scale=False)
self.conv2 = nn.NormalConv2D(
filters=192,
kernel_size=5,
strides=1,
padding='same',
activation='relu',
use_bias=True)
self.pool2 = nn.NormalMaxPool2D(pool_size=2, strides=2)
self.bn2 = nn.NormalBatchNormalization()
self.conv3 = nn.NormalConv2D(
filters=384,
kernel_size=3,
strides=1,
padding='same',
activation='relu',
use_bias=True)
self.bn3 = nn.NormalBatchNormalization()
self.conv4 = nn.NormalConv2D(
filters=384,
kernel_size=3,
strides=1,
padding='same',
activation='relu',
use_bias=True)
self.bn4 = nn.NormalBatchNormalization()
self.conv5 = nn.NormalConv2D(
filters=256,
kernel_size=3,
strides=1,
padding='same',
activation='relu',
use_bias=True)
self.pool5 = nn.NormalMaxPool2D(pool_size=2, strides=2)
self.bn5 = nn.NormalBatchNormalization()
self.flatten = nn.Flatten()
self.dense6 = nn.NormalDense(4096, use_bias=True, activation='relu')
self.bn6 = nn.NormalBatchNormalization()
self.dense7 = nn.NormalDense(4096, use_bias=True, activation='relu')
self.bn7 = nn.NormalBatchNormalization()
self.dense8 = nn.NormalDense(classes, use_bias=True)
#self.scalu = nn.Scalu()
self.softmax = nn.Activation('softmax')
def call(self, inputs, training=None):
x = self.conv1(inputs)
x = self.pool1(x)
x = self.bn1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.bn2(x, training=training)
x = self.conv3(x)
x = self.bn3(x, training=training)
x = self.conv4(x)
x = self.bn4(x, training=training)
x = self.conv5(x)
x = self.pool5(x)
x = self.bn5(x, training=training)
x = self.flatten(x)
x = self.dense6(x)
x = self.bn6(x, training=training)
x = self.dense7(x)
x = self.bn7(x, training=training)
x = self.dense8(x)
#x = self.scalu(x)
x = self.softmax(x)
return x