-
Notifications
You must be signed in to change notification settings - Fork 128
/
unbalanced.py
45 lines (38 loc) · 1.76 KB
/
unbalanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import logging
import os
import sys
from sage.all import ZZ
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared.small_roots import herrmann_may
def factorize(N, partial_p, Q, m=1, t=None, check_bounds=True):
"""
Recovers the prime factors from a modulus if the modulus is unbalanced and bits are known.
More information: Brier E. et al., "Factoring Unbalanced Moduli with Known Bits" (Section 4)
:param N: the modulus: N = p * q > q ** 3
:param partial_p: the partial prime factor p (PartialInteger)
:param Q: the bit length of q
:param m: the m value to use for the small roots method (default: 1)
:param t: the t value to use for the small roots method (default: automatically computed using m)
:param check_bounds: perform bounds check (default: True)
:return: a tuple containing the prime factors, or None if the factors could not be found
"""
W = partial_p.get_unknown_lsb()
assert W > 0, "Number of unknown lsb must be greater than 0 (try adding a dummy unknown bit)."
v, L = partial_p.get_known_middle()
assert not check_bounds or 3 * L ** 2 + (4 * W - 6 * Q) * L + 3 * Q ** 2 - 8 * Q * W > 0, f"Bounds check failed ({3 * L ** 2 + (4 * W - 6 * Q) * L + 3 * Q ** 2 - 8 * Q * W} > 0)."
delta = Q / (W + L)
x, y = ZZ["x", "y"].gens()
a = v * 2 ** W
b = N % (2 ** (W + L))
f = x * (a + y) - b
X = 2 ** Q
Y = 2 ** W
t = int((1 - 2 * delta) * m) if t is None else t
logging.info(f"Trying {m = }, {t = }...")
for x0, y0 in herrmann_may.modular_bivariate(f, 2 ** (W + L), m, t, X, Y):
q = x0
if q != 0 and N % q == 0:
return N // q, q
return None