-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_interface.py
266 lines (216 loc) · 8.48 KB
/
eval_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import typing as tp
import logging
import tempfile
from pathlib import Path
import numpy as np
from multilingual_text_parser import Doc, TextParser
from annotator.align import Aligner, AlignStage
from speechflow.io import AudioChunk, AudioSeg, Timestamps, tp_PATH
from speechflow.utils.fs import get_root_dir
LOGGER = logging.getLogger("root")
class AnnotatorEvaluationInterface:
def __init__(
self,
ckpt_stage1: tp.Union[str, Path],
ckpt_stage2: tp.Union[str, Path],
device: str = "cpu",
last_word_correction: bool = False,
):
self.use_reverse_mode = last_word_correction
self.aligner_stage1 = Aligner(
ckpt_path=ckpt_stage1,
stage=AlignStage.stage1,
device=device,
)
self.aligner_stage2 = Aligner(
ckpt_path=ckpt_stage2,
stage=AlignStage.stage2,
device=device,
)
if self.use_reverse_mode:
self.aligner_stage1_reverse = Aligner(
ckpt_path=ckpt_stage1,
stage=AlignStage.stage1,
device=device,
reverse_mode=True,
preload=self.aligner_stage1.model,
)
self.aligner_stage2_reverse = Aligner(
ckpt_path=ckpt_stage2,
stage=AlignStage.stage2,
device=device,
reverse_mode=True,
preload=self.aligner_stage2.model,
)
self.text_parser = {}
@property
def lang(self) -> str:
return self.aligner_stage1.lang
@staticmethod
def _cat_sentences(text: str) -> str:
sents = Doc(text, sentenize=True, tokenize=True).sents
if len(sents) > 1:
sents = [sent.tokens[:-1] for sent in sents[:-1]] + [sents[-1].tokens]
sents = [" ".join([token.text for token in sent]) for sent in sents]
return ", ".join(sents)
else:
return text
@staticmethod
def _fix_pauses(file_name: Path, min_pause_len) -> AudioSeg:
file_name_reverse = file_name.with_suffix(f"{file_name.suffix}_reverse")
sega = AudioSeg.load(file_name)
_, ph_ts = sega.get_timestamps()
sega_reverse = AudioSeg.load(file_name_reverse)
_, ph_ts_reverse = sega_reverse.get_timestamps()
for idx, (ts, ts_reverse) in enumerate(zip(ph_ts[:-1], ph_ts_reverse[:-1])):
a = ts[-1][1]
ar = ts_reverse[-1][1]
b = ph_ts[idx + 1][0][0]
br = ph_ts_reverse[idx + 1][0][0]
if b - a < min_pause_len and br - ar < min_pause_len:
ph_ts[idx][-1][1] = b
sega.set_phoneme_timestamps(ph_ts, ts_begin=sega.ts_bos, ts_end=sega.ts_eos)
return sega
@staticmethod
def _fix_last_word(file_name: Path):
file_name_reverse = file_name.with_suffix(f"{file_name.suffix}_reverse")
sega = AudioSeg.load(file_name)
word_ts, ph_ts = sega.get_timestamps()
sega_reverse = AudioSeg.load(file_name_reverse)
word_ts_reverse, ph_ts_reverse = sega_reverse.get_timestamps()
if (
word_ts[-1][1] - word_ts[-1][0]
< word_ts_reverse[-1][1] - word_ts_reverse[-1][0]
):
a, b = ph_ts[-1][0][0], 0
for idx, ts_reverse in enumerate(ph_ts_reverse[-1]):
b = a + (ts_reverse[1] - ts_reverse[0])
b = min(b, sega_reverse.ts_eos)
ph_ts[-1][idx][0] = a
ph_ts[-1][idx][1] = b
a = b
dura = np.diff(ph_ts[-1])
if abs(dura[-1]) < 1.0e-4:
dura -= dura * 0.01
delta = (ph_ts[-1].duration - dura.sum()) / len(ph_ts[-1])
dura += delta
ph_ts[-1] = ph_ts[-1][0][0] + Timestamps.from_durations(dura)
if sega_reverse.ts_eos - ph_ts[-1][-1][1] < 0.02:
ph_ts[-1][-1][1] = sega_reverse.ts_eos
ts_begin = sega.ts_bos
ts_end = sega_reverse.ts_eos
sega.set_phoneme_timestamps(ph_ts, ts_begin=ts_begin, ts_end=ts_end)
return sega
def prepare_text(
self,
text: str,
lang: str,
) -> Doc:
if (
self.aligner_stage1.lang_id_map
and lang not in self.aligner_stage1.lang_id_map
):
raise ValueError(f"Language {lang} not support in current TTS model!")
if lang not in self.text_parser:
LOGGER.info(f"Initial TextParser for {lang} language")
self.text_parser[lang] = TextParser(
lang, device=str(self.aligner_stage1.device)
)
doc = self.text_parser[lang].process(Doc(text))
return doc
def get_sega_from_text(
self,
text: str,
wav_path: Path,
lang: str,
speaker_name: str,
) -> AudioSeg:
sents = self.prepare_text(self._cat_sentences(text), lang=lang).sents
assert len(sents) == 1
sent = sents[0]
audio_chunk = AudioChunk(file_path=wav_path).load()
words = sent.get_words()
ts_intervals = np.linspace(audio_chunk.begin, audio_chunk.end, len(words) + 1)
ts = Timestamps(np.asarray(list(zip(ts_intervals[:-1], ts_intervals[1:]))))
sega = AudioSeg(audio_chunk, sent)
sega.set_word_timestamps(ts)
sega.meta["lang"] = lang
sega.meta["speaker_name"] = speaker_name
return sega
def _process(
self,
text: tp.Optional[str] = None,
wav_path: tp.Optional[tp_PATH] = None,
lang: tp.Optional[str] = None,
speaker_name: tp.Optional[str] = None,
sega_path: tp.Optional[tp_PATH] = None,
) -> AudioSeg:
with tempfile.TemporaryDirectory() as tmp_dir:
if sega_path is not None:
sega = AudioSeg.load(sega_path)
assert sega.meta.get("with_audio", False)
wav_path = sega_path.with_suffix(".wav")
sega.meta["wav_path"] = wav_path.as_posix()
elif text is not None and wav_path is not None:
sega = self.get_sega_from_text(text, wav_path, lang, speaker_name)
else:
raise NotImplementedError("Set 'text' and 'wav_path' or 'sega_path'")
file_name = Path(tmp_dir) / f"{wav_path.name}.TextGrid"
file_name = file_name.absolute()
sega.save(file_name)
self.aligner_stage1.align_sega(file_name)
if self.use_reverse_mode:
self.aligner_stage1_reverse.align_sega(file_name)
file_name = file_name.with_suffix(".TextGridStage1")
if self.use_reverse_mode:
sega = self._fix_pauses(file_name, self.aligner_stage2.min_pause_len)
sega.save(file_name)
self.aligner_stage2.align_sega(file_name)
if self.use_reverse_mode:
self.aligner_stage2_reverse.align_sega(file_name)
file_name = file_name.with_suffix(".TextGridStage2")
if self.use_reverse_mode:
sega = self._fix_last_word(file_name)
else:
sega = AudioSeg.load(file_name)
if sega_path is not None:
sega.meta["wav_path"] = wav_path.name
return sega
@tp.overload
def process(
self,
text: str,
wav_path: tp_PATH,
lang: str,
speaker_name: str,
) -> AudioSeg:
...
@tp.overload
def process(self, sega_path: tp_PATH) -> AudioSeg:
...
def process(self, *args, **kwargs) -> AudioSeg:
if "sega_path" in kwargs:
return self._process(sega_path=kwargs["sega_path"])
else:
return self._process(*args, **kwargs)
if __name__ == "__main__":
from annotator.audio_transcription import OpenAIASR
glow_tts_stage1 = Path(
"multilingual-forced-alignment/mfa_v1.0/mfa_stage1_epoch=19-step=208340.pt"
)
glow_tts_stage2 = Path(
"multilingual-forced-alignment/mfa_v1.0/mfa_stage2_epoch=29-step=312510.pt"
)
_lang = "RU"
_speaker_name = "Tatiana"
_wav_path = get_root_dir() / "tests/data/test_audio.wav"
_asr = OpenAIASR(lang=_lang, model_name="tiny")
_text = _asr.converter({"wav_path": _wav_path})[0]["text"]
annotator = AnnotatorEvaluationInterface(
glow_tts_stage1,
glow_tts_stage2,
device="cpu",
last_word_correction=False,
)
_sega = annotator.process(_text, _wav_path, _lang, _speaker_name)
_sega.save("sega.tg", with_audio=True)