-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
308 lines (218 loc) · 8.72 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
import argparse
import os
import os.path as osp
from darknet import Darknet
import pickle as pkl
import pandas as pd
import random
# detector.py is the file that we will execute to run our detector.
def arg_parse():
"""
Parse arguments to the detect module
"""
parser = argparse.ArgumentParser(description='YOLO v3 Detection Module')
parser.add_argument("--images", dest = 'images', help =
"Image / Directory containing images to perform detection upon",
default = "imgs", type = str)
parser.add_argument("--det", dest = 'det', help =
"Image / Directory to store detections to",
default = "det", type = str)
parser.add_argument("--bs", dest = "bs", help = "Batch size", default = 1)
parser.add_argument("--confidence", dest = "confidence", help =
"Object Confidence to filter predictions",
default = 0.5)
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshold",
default = 0.4)
parser.add_argument("--cfg", dest = 'cfgfile', help =
"Config file",
default = "cfg/yolov3.cfg", type = str)
parser.add_argument("--weights", dest = 'weightsfile', help =
"weightsfile",
default = "yolov3.weights", type = str)
parser.add_argument("--reso", dest = 'reso', help =
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
default = "416", type = str)
return parser.parse_args()
def letterbox_image(img, inp_dim):
'''resize image with unchanged aspect ratio using padding'''
img_w, img_h = img.shape[1], img.shape[0]
w, h = inp_dim
new_w = int(img_w * min(w/img_w, h/img_h))
new_h = int(img_h * min(w/img_w, h/img_h))
resized_image = cv2.resize(img, (new_w, new_h), interpolation = cv2.INTER_CUBIC)
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128) # padding with color (128, 128, 128)
canvas[(h-new_h)//2 : (h-new_h)//2+new_h, (w-new_w)//2 : (w-new_w)//2+new_w, :] = resized_image
return canvas
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Variable.
"""
img = cv2.resize(img, (inp_dim, inp_dim)) # default: 416 x 416
img = img[:, :, ::-1].transpose((2, 0, 1)).copy()
img = torch.from_numpy(img).float().div(255.0).unsqueeze(0)
return img
args = arg_parse()
images = args.images
batch_size = int(args.bs)
confidence = float(args.confidence)
nms_thresh = float(args.nms_thresh)
start = 0
CUDA = torch.cuda.is_available()
# Load the class file in our program
num_classes = 80 # For COCO
classes = load_classes("data/coco.names")
# Device setting
device = torch.device("cuda" if CUDA else "cpu")
# Initialize the network and load weights
## Set up the neural network
print("Loading network.....")
model = Darknet(args.cfgfile).to(device)
model.load_weights(args.weightsfile)
print("Network successfully loaded")
model.net_info["height"] = int(args.reso)
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
# Following code is no longer used in PyTorch 0.4.0
"""
# If there's a GPU available, put the model on GPU
if CUDA:
model.cuda()
"""
# Set the model in evaluation mode
model.eval()
# Read the Input images
# The paths of the image(or images) are stored in a list called 'imlist'
read_dir = time.time() # a checkpoint used to measure time
# Detection phase
try:
imlist = [osp.join(osp.realpath('.'), images, img) for img in os.listdir(images)]
except NotADirectoryError:
imlist = []
imlist.append(osp.join(osp.realpath('.'), images))
except FileNotFoundError:
print("No file or directory with the name {}".format(images))
exit()
if not os.path.exists(args.det):
os.makedirs(args.det)
# load images
load_batch = time.time()
loaded_ims = [cv2.imread(x) for x in imlist]
# Pytorch Variables for images
im_batches = list(map(prep_image, loaded_ims, [inp_dim for x in range(len(imlist))]))
# List containing dimensions of original images
im_dim_list = [(x.shape[1], x.shape[0]) for x in loaded_ims]
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2)
im_dim_list = im_dim_list.to(device)
# Create the Batches
leftover = 0
if (len(im_dim_list) % batch_size):
leftover = 1
if batch_size != 1:
num_batches = len(imlist) // batch_size + leftover
im_batches = [torch.cat((im_batches[i*batch_size : min((i + 1)*batch_size,
len(im_batches))])) for i in range(num_batches)]
### The Detection Loop ###
write = 0
start_det_loop = time.time()
objs = {}
for i, batch in enumerate(im_batches):
# load the image
start = time.time()
batch = batch.to(device)
# prediction = model(Variable(batch, volatile = True), CUDA)
with torch.no_grad():
# prediction = model(Variable(batch), CUDA)
prediction = model(batch, CUDA) # PyTorch 0.4.0 Style
# Update: volatile is deprecated in PyTorch 0.4, and wouldn't be tracked by autograd.
# (The volatile flag has no effect now.)
# prediction = prediction[:, scales_indices]
prediction = write_results(prediction, confidence, num_classes, nms_conf = nms_thresh)
end = time.time()
if prediction is None or type(prediction) == int:
# for im_num, image in enumerate(imlist[i*batch_size : min((i + 1)*batch_size, len(imlist))]):
# im_id = i*batch_size + im_num
# print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size))
# print("{0:20s} {1:s}".format("Objects Detected:", ""))
# print("-" * 60)
continue
prediction[:, 0] += i*batch_size # transform the attribute from index in batch to index in imlist
if not write: # If we haven't initialized output
output = prediction
write = 1
else:
output = torch.cat((output, prediction))
for im_num, image in enumerate(imlist[i*batch_size : min((i + 1)*batch_size, len(imlist))]):
im_id = i*batch_size + im_num
objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size))
print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs)))
print("-" * 60)
if CUDA:
torch.cuda.synchronize() # makes sure that CUDA kernel is synchronized with the CPU
try:
output
except NameError:
print("No detections were made")
exit()
## Drawing bounding boxes on images ##
im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long())
scaling_factor = torch.min(inp_dim / im_dim_list, 1)[0].view(-1, 1)
output[:, [1,3]] -= (inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
output[:, [2,4]] -= (inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
# Undo rescaling
output[:,1:5] /= scaling_factor
# Clip bounding boxes
for i in range(output.shape[0]):
output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0])
output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1])
output_recast = time.time()
# Choose random color for bounding boxes from pickle file
class_load = time.time()
colors = pkl.load(open("pallete", "rb"))
# Draw the boxes!
draw = time.time()
# The function draws a rectangle with a color of a random choice.
def write(x, results):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
img = results[int(x[0])]
cls = int(x[-1])
label = "{0}".format(classes[cls])
color = random.choice(colors)
cv2.rectangle(img, c1, c2, color, 1) # Create a random colored rectangle
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2, color, -1) # Create a randomly filled colored rectangle
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225, 255, 255], 1)
return img
# Draw the bounding boxes on images
list(map(lambda x: write(x, loaded_ims), output))
# Create a list of image addresses to save detections
det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format(args.det, x.split("/")[-1]))
# Write the images with detections to the address
list(map(cv2.imwrite, det_names, loaded_ims))
end = time.time()
### Printing Time Summary ###
# To compare how different hyperparameters effect the speed of the detector.
print("SUMMARY")
print("-" * 60)
print("{:25s}: {}".format("Task", "Time Taken (in seconds)"))
print()
print("{:25s}: {:2.3f}".format("Reading addresses", load_batch - read_dir))
print("{:25s}: {:2.3f}".format("Loading batch", start_det_loop - load_batch))
print("{:25s}: {:2.3f}".format("Detection (" + str(len(imlist)) + " images)", output_recast - start_det_loop))
print("{:25s}: {:2.3f}".format("Output Processing", class_load - output_recast))
print("{:25s}: {:2.3f}".format("Drawing Boxes", end - draw))
print("{:25s}: {:2.3f}".format("Averate time_per_img", (end - load_batch)/len(imlist)))
print("-" * 60)
torch.cuda.empty_cache()