-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
60 lines (48 loc) · 2.12 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import logging
import torch
import torch.nn.functional as F
from utils import metrics
logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
logger = logging.getLogger(__name__)
def train(model, optimizer, train_dataloader, valid_dataloader, args):
best_f1 = 0
logger.info('Start Training!')
for epoch in range(1, args.epochs+1):
model.train()
for step, (x, y) in enumerate(train_dataloader):
x, y = x.to(args.device), y.to(args.device)
pred = model(x)
loss = F.cross_entropy(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step+1) % 200 == 0:
logger.info(f'|EPOCHS| {epoch:>}/{args.epochs} |STEP| {step+1:>4}/{len(train_dataloader)} |LOSS| {loss.item():>.4f}')
avg_loss, accuracy, _, _, f1, _ = evaluate(model, valid_dataloader, args)
logger.info('-'*50)
logger.info(f'|* VALID SET *| |VAL LOSS| {avg_loss:>.4f} |ACC| {accuracy:>.4f} |F1| {f1:>.4f}')
logger.info('-'*50)
if f1 > best_f1:
best_f1 = f1
logger.info(f'Saving best model... F1 score is {best_f1:>.4f}')
if not os.path.isdir(args.model_save_path):
os.mkdir(args.model_save_path)
torch.save(model.state_dict(), os.path.join(args.model_save_path, "best.pt"))
logger.info('Model saved!')
def evaluate(model, valid_dataloader, args):
with torch.no_grad():
model.eval()
losses, correct = 0, 0
y_hats, targets = [], []
for x, y in valid_dataloader:
x, y = x.to(args.device), y.to(args.device)
pred = model(x)
loss = F.cross_entropy(pred, y)
losses += loss.item()
y_hat = torch.max(pred, 1)[1]
y_hats += y_hat.tolist()
targets += y.tolist()
correct += (y_hat == y).sum().item()
avg_loss, accuracy, precision, recall, f1, cm = metrics(valid_dataloader, losses, correct, y_hats, targets)
return avg_loss, accuracy, precision, recall, f1, cm