forked from landmanbester/Copernicus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCP.py
executable file
·323 lines (301 loc) · 12.3 KB
/
CP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env python
import numpy as np
import os
import argparse
import ConfigParser
import concurrent.futures as cf
from Copernicus.sampler import sampler
from Copernicus import MCMC_Tools as MCT
import matplotlib.pyplot as plt
import Plotter
def readargs():
conf_parser = argparse.ArgumentParser(
# Turn off help, so we print all options in response to -h
add_help=False
)
conf_parser.add_argument("-c", "--conf_file",
help="Specify config file", metavar="FILE")
args, remaining_argv = conf_parser.parse_known_args()
defaults = {
"nwalkers" : 10,
"nsamples" : 10000,
"nburnin" : 2500,
"tstar" : 3.25,
"doplcf" : True,
"dotransform" : True,
"fname" : "/home/bester/Projects/CP_Dir/",
"data_prior" : ["H","rho"],
"data_lik" : ["D","H","dzdw"],
"zmax" : 2.0,
"np" : 200,
"nret" : 100,
"err" : 1e-5,
"beta" : 0.01,
}
if args.conf_file:
config = ConfigParser.SafeConfigParser()
config.read([args.conf_file])
defaults = dict(config.items('Defaults'))
# Don't surpress add_help here so it will handle -h
parser = argparse.ArgumentParser(
# Inherit options from config_parser
parents=[conf_parser],
# print script description with -h/--help
description=__doc__,
# Don't mess with format of description
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.set_defaults(**defaults)
parser.add_argument("--nwalkers", type=int, help="The number of samplers to spawn")
parser.add_argument("--nsamples", type=int, help="The number of samples each sampler should draw")
parser.add_argument("--nburnin", type=int, help="The number of samples in the burnin period")
parser.add_argument("--tstar", type=float, help="The time up to which to integrate to [in Gpc for now]")
parser.add_argument("--doplcf", type=bool, help="Whether to compute the interior of the PLC or not")
parser.add_argument("--dotransform", type=bool, help="Whether to perform the coordinate transformation or not")
parser.add_argument("--fname", type=str, help="Where to save the results")
parser.add_argument("--data_prior", type=str, help="The data sets to use to set priors")
parser.add_argument("--data_lik", type=str, help="The data sets to use for inference")
parser.add_argument("--zmax", type=float, help="The maximum redshift to go out to")
parser.add_argument("--np", type=int, help="The number of redshift points to use")
parser.add_argument("--nret", type=int, help="The number of points at which to return quantities of interest")
parser.add_argument("--err", type=float, help="Target error of the numerical integration scheme")
parser.add_argument("--beta", type=float, help="Parameter to control acceptance rate of the MCMC")
args = parser.parse_args(remaining_argv)
#return dict containing args
return vars(args)
def load_samps(NSamplers,fname):
"""
Method to load samples after MCMC
:param NSamplers: the numbers of walkers i.e. MCMC chains
:param fname: the path where thje results were written out to
:return:
"""
#Load first samples
fpath = fname+"Samps0.npz"
holder = np.load(fpath) #/home/landman/Documents/Research/Algo_Pap/Simulated_LCDM_prior/ProcessedData/Samps1s.npz')
# Dsamps = np.asarray(holder['Dsamps'])
# Dpsamps = np.asarray(holder['Dpsamps'])
Hsamps = np.asarray(holder['Hsamps'])
rhosamps = np.asarray(holder['rhosamps'])
Lamsamps = np.asarray(holder['Lamsamps'])
# rhopsamps = np.asarray(holder['rhopsamps'])
# zfmax = np.asarray(holder['zfmax'])
T2i = np.asarray(holder['T2i'])
T2f = np.asarray(holder['T2f'])
T1i = np.asarray(holder['T1i'])
T1f = np.asarray(holder['T1f'])
LLTBConsi = np.asarray(holder['LLTBConsi'])
LLTBConsf = np.asarray(holder['LLTBConsf'])
# t0 = np.asarray(holder['t0'])
# rhostar = np.asarray(holder['rhostar'])
# Dstar = np.asarray(holder['Dstar'])
# Xstar = np.asarray(holder['Xstar'])
# rmax= np.asarray(holder['rmax'])
# vmax= np.asarray(holder['vmax'])
#Load the rest of the data
for i in xrange(1,NSamplers):
dirpath = fname + "Samps" + str(i) + '.npz'
holder = np.load(dirpath)
# Dsamps = np.append(Dsamps,holder['Dsamps'],axis=1)
# Dpsamps = np.append(Dpsamps,holder['Dpsamps'],axis=1)
Hsamps = np.append(Hsamps,holder['Hsamps'],axis=1)
rhosamps = np.append(rhosamps,holder['rhosamps'],axis=1)
# rhopsamps = np.append(rhopsamps,holder['rhopsamps'],axis=1)
# zfmax = np.append(zfmax,holder['zfmax'])
T2i = np.append(T2i,holder['T2i'],axis=1)
T2f = np.append(T2f,holder['T2f'],axis=1)
T1i = np.append(T1i,holder['T1i'],axis=1)
T1f = np.append(T1f,holder['T1f'],axis=1)
LLTBConsi = np.append(LLTBConsi, holder['LLTBConsi'])
LLTBConsf = np.append(LLTBConsf, holder['LLTBConsf'])
Lamsamps = np.append(Lamsamps, holder['Lamsamps'])
# t0 = np.append(t0,holder['t0'])
# rhostar = np.append(rhostar,holder['rhostar'],axis=1)
# Dstar = np.append(Dstar,holder['Dstar'],axis=1)
# Xstar = np.append(Xstar,holder['Xstar'],axis=1)
# rmax = np.append(rmax,holder['rmax'])
# vmax = np.append(vmax,holder['vmax'])
#return Dsamps,Dpsamps,Hsamps,rhosamps,rhopsamps,zfmax,Ki,Kf,sheari,shearf,t0,rhostar,Dstar,Xstar,rmax,vmax
return Hsamps, rhosamps, T1i, T1f, T2i, T2f, LLTBConsi, LLTBConsf, Lamsamps
if __name__ == "__main__":
#Get config
GD = readargs()
#Determine how many samplers to spawn
NSamplers = GD["nwalkers"]
Nsamp = GD["nsamples"]
Nburn = GD["nburnin"]
tstar = GD["tstar"]
DoPLCF = GD["doplcf"]
DoTransform = GD["dotransform"]
fname = GD["fname"]
data_prior = GD["data_prior"]
data_lik = GD["data_lik"]
zmax = GD["zmax"]
Np = GD["np"]
Nret = GD["nret"]
err = GD["err"]
beta = GD["beta"]
futures = []
Hzlist = []
Dzlist = []
rhozlist = []
dzdwzlist = []
Lamlist = []
T1ilist = []
T1flist = []
T2ilist = []
T2flist = []
LLTBConsilist = []
LLTBConsflist = []
Dilist = []
Dflist = []
Silist = []
Sflist = []
Qilist = []
Qflist = []
Ailist = []
Aflist = []
Zilist = []
Zflist = []
Spilist = []
Spflist = []
Qpilist = []
Qpflist = []
Zpilist = []
Zpflist = []
uilist = []
uflist = []
upilist = []
upflist = []
uppilist = []
uppflist = []
udotilist = []
udotflist = []
rhoilist = []
rhoflist = []
rhopilist = []
rhopflist = []
rhodotilist = []
rhodotflist = []
#sampler.sampler(zmax,Np,Nret,Nsamp,Nburn,tstar,data_prior,data_lik,DoPLCF,DoTransform,err,0,fname)
#Create a pool for this number of samplers and submit the jobs
Hsamps = np.zeros([NSamplers,Np,Nsamp])
cont = True
num_repeats = 0
max_repeats = 1
while cont and num_repeats < max_repeats:
with cf.ProcessPoolExecutor(max_workers=NSamplers) as executor:
for i in xrange(NSamplers):
# tmpstr = 'sampler' + str(i)
# SamplerDICT[tmpstr] =
future = executor.submit(sampler,zmax,Np,Nret,Nsamp,Nburn,tstar,data_prior,data_lik,DoPLCF,DoTransform,err,i,fname,beta)
futures.append(future)
# cf.as_completed(SamplerDICT[tmpstr])
#cf.as_completed(executor.submit(sampler.sampler,zmax,Np,Nret,Nsamp,Nburn,tstar,data_prior,data_lik,DoPLCF,DoTransform,err,i,fname))
k = 0
for f in cf.as_completed(futures):
Hz, rhoz, Lam, T1i, T1f, T2i, T2f, LLTBConsi, LLTBConsf, Di, Df, Si, Sf, Qi, Qf, Ai, Af, Zi, \
Zf, Spi, Spf, Qpi, Qpf, Zpi, Zpf, ui, uf, upi, upf, uppi, uppf, udoti, udotf, rhoi, rhof, rhopi, rhopf, \
rhodoti, rhodotf, Dz, dzdwz = f.result()
Dzlist.append(Dz)
Hzlist.append(Hz)
rhozlist.append(rhoz)
dzdwzlist.append(dzdwz)
Lamlist.append(Lam)
T1ilist.append(T1i)
T1flist.append(T1f)
T2ilist.append(T2i)
T2flist.append(T2f)
LLTBConsilist.append(LLTBConsi)
LLTBConsflist.append(LLTBConsf)
Dilist.append(Di)
Dflist.append(Df)
Silist.append(Si)
Sflist.append(Sf)
Qilist.append(Qi)
Qflist.append(Qf)
Ailist.append(Ai)
Aflist.append(Af)
Zilist.append(Zi)
Zflist.append(Zf)
Spilist.append(Spi)
Spflist.append(Spf)
Qpilist.append(Qpi)
Qpflist.append(Qpf)
Zpilist.append(Zpi)
Zpflist.append(Zpf)
uilist.append(ui)
uflist.append(uf)
upilist.append(upi)
upflist.append(upf)
uppilist.append(uppi)
uppflist.append(uppf)
udotilist.append(udoti)
udotflist.append(udotf)
rhoilist.append(rhoi)
rhoflist.append(rhof)
rhopilist.append(rhopi)
rhopflist.append(rhopf)
rhodotilist.append(rhodoti)
rhodotflist.append(rhodotf)
Htest = MCT.MCMC_diagnostics(NSamplers, Hzlist).get_GRC().max()
rhotest = MCT.MCMC_diagnostics(NSamplers, rhozlist).get_GRC().max()
T1itest = MCT.MCMC_diagnostics(NSamplers, T1ilist).get_GRC().max()
T1ftest = MCT.MCMC_diagnostics(NSamplers, T1flist).get_GRC().max()
T2itest = MCT.MCMC_diagnostics(NSamplers, T2ilist).get_GRC().max()
T2ftest = MCT.MCMC_diagnostics(NSamplers, T2flist).get_GRC().max()
test_GR = np.array([Htest,rhotest,T1itest, T1ftest, T2itest, T2ftest])
cont = any(test_GR > 1.15)
if cont and num_repeats < max_repeats:
print "Gelman-Rubin indicates non-convergence"
Nsamp *= 2
num_repeats += 1
#Save the data
np.savez(fname + "Processed_Data/" + "Samps.npz", Hz=Hzlist, rhoz=rhozlist, Lam=Lamlist, T1i=T1ilist, T1f=T1flist, T2i=T2ilist,
T2f=T2flist, LLTBConsi=LLTBConsilist, LLTBConsf=LLTBConsflist, Di=Dilist, Df=Dflist, Si=Silist, Sf=Sflist,
Qi=Qilist, Qf=Qflist, Ai=Ailist, Af=Aflist, Zi=Zilist, Zf=Zflist, Spi=Spilist, Spf=Spflist, Qpi=Qpilist,
Qpf=Qpflist, Zpi=Zpilist, Zpf=Zpflist, ui=uilist, uf=uflist, upi=upilist, upf=upflist, uppi=uppilist,
uppf=uppflist, udoti=udotilist, udotf=udotflist, rhoi=rhoilist, rhof=rhoflist, rhopi=rhopilist,
rhopf=rhopflist, rhodoti=rhodotilist, rhodotf=rhodotflist, NSamplers=NSamplers, Dz=Dzlist, dzdwz=dzdwzlist)
#print Hsamps.shape
print "GR(H) = ", Htest, "GR(rho)", rhotest, "GR(T1i)", T1itest, "GR(T1f)", T1ftest, "GR(T2i)", T2itest, "GR(T2f)", T2ftest
# plt.figure('H')
# for i in xrange(NSamplers):
# plt.plot(Hsampslist[i],'b',alpha=0.1)
# plt.savefig(fname + "H.png",dpi=250)
#
# plt.figure('rho')
# for i in xrange(NSamplers):
# plt.plot(rhosampslist[i],'b',alpha=0.1)
# plt.savefig(fname + "rho.png", dpi=250)
#
# plt.figure('T1i')
# for i in xrange(NSamplers):
# plt.plot(T1ilist[i],'b',alpha=0.1)
# plt.savefig(fname + "T1i.png", dpi=250)
#
# plt.figure('T1f')
# for i in xrange(NSamplers):
# plt.plot(T1flist[i],'b',alpha=0.1)
# plt.savefig(fname + "T1f.png", dpi=250)
#
# plt.figure('T2i')
# for i in xrange(NSamplers):
# plt.plot(T2ilist[i],'b',alpha=0.1)
# plt.savefig(fname + "T2i.png", dpi=250)
#
# plt.figure('T2f')
# for i in xrange(NSamplers):
# plt.plot(T2flist[i],'b',alpha=0.1)
# plt.savefig(fname + "T2f.png", dpi=250)
#
# plt.figure('LLTBi')
# for i in xrange(NSamplers):
# plt.plot(LLTBConsilist[i],'b',alpha=0.1)
# plt.savefig(fname + "LLTBi.png", dpi=250)
#
# plt.figure('LLTBf')
# for i in xrange(NSamplers):
# plt.plot(LLTBConsflist[i],'b',alpha=0.1)
# plt.savefig(fname + "LLTBf.png", dpi=250)
#print NSamplers, Nsamp, Nburn, tstar, DoPLCF, DoTransform, fname, data_prior, data_lik, zmax, Np, Nret, err