-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplugmap.py
executable file
·592 lines (505 loc) · 20.9 KB
/
plugmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#!/usr/bin/env python
#import pylab
import numpy as np
import sys,os
import pyfits
import string
import math
import argparse
def read_holes(filename) :
debug=False
file=open(filename,"r")
indices={}
indices["WHAT"]=3
indices["ra"]=4
indices["dec"]=5
indices["LAMBDAEFF"]=14
objects={}
for k in indices :
objects[k]=[]
for line in file.readlines() :
line=line.strip().replace('\t',' ').replace('"',' ')
#if debug : print "line: ",line
if line.find("STRUCT1")!=0 :
continue
tmp=line.split(" ")
entries=[]
for t in tmp :
if len(t)>0 :
entries.append(t)
offset=0
if entries[indices["dec"]]=="1" :
offset=-1
print "offset=",offset
for k in objects.keys() :
i=indices[k]+offset
val=entries[i]
tmp=None
try :
tmp=string.atoi(val)
except ValueError :
pass
if tmp is None :
try :
val=string.atof(val)
except ValueError :
pass
if tmp is not None :
val=tmp
objects[k].append(val)
if debug : print k,val
if debug : print "added one object"
# convert objects into np.array
for k in objects :
objects[k]=np.array(objects[k])
return objects
def read_plugmap(filename) :
debug=False
file=open(filename,"r")
doc={}
intypedef=False
indices={}
indices["HOLETYPE"]=8
indices["OBJECT"]=21
indices["ra"]=9
indices["dec"]=10
indices["xfoc"]=22
indices["yfoc"]=23
objects={}
for k in indices :
objects[k]=[]
for line in file.readlines() :
line=line.strip().replace('\t',' ')
if debug :
print "line: ",line
if len(line)==0 :
continue
if line[0]=="#" :
continue
if line.find("typedef")>=0 :
intypedef=True
if debug :
print "now in typedef"
continue
if intypedef and line.find("}")>=0 :
intypedef=False
if debug :
print "end of typedef"
continue
if intypedef :
continue
if line.find("PLUGMAPOBJ")>=0 :
tmp=line.split(" ")
entries=[]
for t in tmp :
if len(t)>0 :
entries.append(t)
for k in objects.keys() :
i=indices[k]
val=entries[i]
#print k,i,val
tmp=None
try :
tmp=string.atoi(val)
except ValueError :
pass
if tmp is None :
try :
val=string.atof(val)
except ValueError :
pass
if tmp is not None :
val=tmp
objects[k].append(val)
if debug :
print "added one PLUGMAPOBJ"
continue
tmp=line.strip().split(" ")
entries=[]
for t in tmp :
if len(t)>0 :
entries.append(t)
if len(entries)>=2 :
key=entries[0]
val=entries[1]
tmp=None
try :
tmp=string.atoi(val)
except ValueError :
pass
if tmp is None :
try :
val=string.atof(val)
except ValueError :
pass
if tmp is not None :
val=tmp
doc[key]=val
if debug :
print "added doc",key,val
# convert objects into np.array
for k in objects :
objects[k]=np.array(objects[k])
return doc,objects
class OpticalDistortion() :
def __init__(self,platescale) :
self.platescale=platescale # has units
# see ~/software/platedesign/trunk/pro/plate/ad2xyfocal.pro
coef=np.array([-0.000137627, -0.00125238, 1.5447e-09,
8.23673e-08, -2.74584e-13, -1.53239e-12,
6.04194e-18, 1.38033e-17, -2.97064e-23,
-3.58767e-23])
self.achromatic_distortion_pol=np.poly1d(coef[::-1])
# see ~/software/platedesign/trunk/pro/plate/apo_rdistort.pro
mm_per_rad =platescale*180/math.pi
self.chromatic_distort_radii=np.arcsin(np.linspace(0,90,10)*math.pi/(60*180))*mm_per_rad
print "RADII=",self.chromatic_distort_radii
self.chromatic_distort_wave=np.array([5300,4000,5500,6000,8000,10000,15350,15950,16550])
nw=self.chromatic_distort_wave.size
nr=self.chromatic_distort_radii.size
self.chromatic_distort=np.array([
[0.,36.26,72.53,108.84,145.18,181.53,217.90,254.29,290.77,327.44],
[0.,-0.002,-0.003,-0.004,-0.005,-0.005,-0.005,-0.004,-0.002,0.003],
[0.,0.,0.,0.,0.,0.,0.,0.,0.,0.],
[0.,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,-0.001],
[0.,0.001,0.003,0.003,0.004,0.004,0.004,0.003,0.002,-0.003],
[0.,0.002,0.004,0.005,0.005,0.005,0.005,0.005,0.003,-0.004],
[0.,0.003,0.006,0.007,0.008,0.008,0.008,0.008,0.004,-0.006],
[0.,0.003,0.006,0.008,0.008,0.009,0.009,0.008,0.004,-0.006],
[0.,0.004,0.006,0.008,0.009,0.009,0.009,0.008,0.004,-0.007]])
# apply scaling
scale=np.zeros((nr))
scale[1:]=self.chromatic_distort_radii[1:]/self.chromatic_distort[0,1:]
self.chromatic_distort[1:] *= scale
self.chromatic_distort[0]=0.
# sort wave
ii=np.argsort(self.chromatic_distort_wave)
self.chromatic_distort_wave=self.chromatic_distort_wave[ii]
for j in range(nr) :
self.chromatic_distort[:,j]=self.chromatic_distort[ii,j]
# in ad2xyfocal, a reference wavelength of 5000A instead of 5500A is used !!
ref_distort = np.zeros((nr))
for j in range(nr) :
ref_distort[j]=np.interp(5000,self.chromatic_distort_wave,self.chromatic_distort[:,j])
self.chromatic_distort -= ref_distort
"""
pylab.plot(self.chromatic_distort_wave,self.chromatic_distort[:,-1],"o-")
ww=np.linspace(4000,8000,200)*u.angstrom
r=self.chromatic_distort_radii[-1]
dd=np.zeros((ww.size))
for i in range(ww.size) :
dd[i]=self.chromatic_distortion(r,ww[i]).to(u.mm).value
pylab.plot(ww,dd,c="r")
pylab.show()
"""
def chromatic_distortion(self,radius,wavelength) : # with radius and wave with units , returns delta r to be added
i=np.where(self.chromatic_distort_wave>=wavelength)[0]
if i.size == 0 :
i=1
else :
i=min(max(1,i[0]),self.chromatic_distort_radii.size-1)
dist1=np.interp(radius,self.chromatic_distort_radii,self.chromatic_distort[i-1])
dist2=np.interp(radius,self.chromatic_distort_radii,self.chromatic_distort[i])
dist=np.interp(wavelength,[self.chromatic_distort_wave[i-1],self.chromatic_distort_wave[i]],[dist1,dist2])
return dist
def distortion(self,radius,wavelength,chromatic_distortion_scale=1.) :
return self.achromatic_distortion_pol(radius) + chromatic_distortion_scale*self.chromatic_distortion(radius,wavelength)
# same result as idlutils/goddard/pro/astro/hadec2altaz.pro
# but with adr calibrated using astropy
def hadec2altaz(ha, dec, lat, wavelength=None) : # ha,dec,lat in deg, wave in a, returns alt,az
d2r = math.pi/180.
sh = math.sin(ha*d2r)
ch = math.cos(ha*d2r)
sd = math.sin(dec*d2r)
cd = math.cos(dec*d2r)
sl = math.sin(lat*d2r)
cl = math.cos(lat*d2r)
"""
x=np.array([cd*ch,cd*sh,sd])
r=np.array([[sl,0,-cl],[0,1,0],[cl,0,sl]])
x=r.dot(x)
x0=x[0]
x1=x[1]
x2=x[2]
"""
x0 = - ch * cd * sl + sd * cl
x1 = - sh * cd
x2 = ch * cd * cl + sd * sl
r=math.sqrt(x0**2+x1**2)
az = math.atan2(-x1,-x0) /d2r
alt = math.atan2(x2,r) / d2r
if wavelength is not None :
# arcsec per unit of tan(zenith)
fact=np.interp(wavelength,[3000,3500,4000,5000,5400,6000,7000,8000],[44.166347,43.365612,42.8640697818,42.292551282,42.1507465805,41.990386,41.811009,41.695723])
alt += fact*(r/x2)/3600.
return alt,az
# exact same routine as altaz2rpa in idl in platedesign/trunk/pro/plate/ad2xyfocal.pro , needed to get same platescale definition
def altaz2xy(alt,az,altcen,azcen,platescale) :
d2r=math.pi/180
xx= -np.sin(az*d2r) * np.sin((90-alt)*d2r)
yy= -np.cos(az*d2r) * np.sin((90-alt)*d2r)
zz= np.cos((90-alt)*d2r)
xi= -xx*np.cos(azcen*d2r) + yy*np.sin(azcen*d2r)
yi= -yy*np.cos(azcen*d2r) - xx*np.sin(azcen*d2r)
zi= zz
xl= xi
yl= yi*np.sin((90-altcen)*d2r) + zi*np.cos((90-altcen)*d2r)
zl= zi*np.sin((90-altcen)*d2r) - yi*np.cos((90-altcen)*d2r)
rfocal=np.arcsin(np.sqrt(xl**2+zl**2))/d2r*platescale
posang=np.arctan2(-xl, zl)
return rfocal*np.cos(posang),rfocal*np.sin(posang)
def hadec2xy(ha,dec,alt0,az0,crot,srot,latitude,platescale,distortion,wavelength,chromatic_distortion_scale=1.) :
alt,az = hadec2altaz(ha,dec,latitude,wavelength)
x,y = altaz2xy(alt,az,alt0,az0,platescale)
rscale = 1
if 1 :
# Distortion, see ad2xyfocal.pro
r = np.sqrt(x**2 + y**2)
if r>0 :
rscale = 1+distortion.distortion(r,wavelength,chromatic_distortion_scale)/r
# Rotate the focal plane so that +y points towards a point that is offset from
# the plate center along DEC by +1.5 degrees.
xr = rscale*(x*crot-y*srot)
yr = rscale*(x*srot+y*crot)
return -xr,yr,alt,az
def main() :
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-p','--plugmap', type = str, default = None, required=True,
help = 'path to plPlugMapP-XXXX.par')
parser.add_argument('--holes', type = str, default = None, required=True,
help = 'path to plateHoles-00XXXX.par')
parser.add_argument('-c','--config', type = str, default = None, required=False,
help = 'path to configuration file')
parser.add_argument('--oha', type = float, default = None, required=False,
help = 'observed hour angle, overwrite config')
parser.add_argument('-o','--outfile', type = str, default = None, required=True,
help = 'path to output ASCII file')
args = parser.parse_args()
if len(sys.argv)<3 :
print sys.argv[0],"plPlugMapP-4392.par myPlugMapP-4392.list (observed HA, default 0)"
sys.exit(12)
params={}
params["DESIGN_GUIDE_WAVE"]=5400.
params["OBSERVED_HA"]=0. # observed hour angle
params["OBSERVED_GUIDE_WAVE"]=5400.
params["OBSERVED_QSO_WAVE"]=7450. # to study r1/r2
params["OBSERVED_STAR_WAVE"]=7467.
params["OBSERVED_LRG_WAVE"]=7498.
params["OBSERVED_ELG_WAVE"]=7498.
params["FIBER_LOSS_SIGMA_ARCSEC"]=0.87
params["CHROMATIC_DISTORTION_SCALE"]=1.
# read configuration file
if args.config is not None :
file=open(args.config)
for line in file.readlines() :
vals=line.strip().split(" ")
nvals=[]
for v in vals :
if len(v)>0 :
nvals.append(v)
if len(nvals)>=2 :
params[nvals[0]]=string.atof(nvals[1])
file.close()
if args.oha is not None :
params["OBSERVED_HA"]=args.oha
print "parameters=",params
doc,objects=read_plugmap(args.plugmap)
holes=read_holes(args.holes)
# add LAMBDAEFF
objects["LAMBDAEFF"]=np.zeros((objects["ra"].size))
for ra,dec,o in zip(objects["ra"],objects["dec"],range(objects["ra"].size)) :
i=np.where((np.abs(holes["ra"]-ra)<0.0001)&(np.abs(holes["dec"]-dec)<0.0001))[0]
if i.size == 0 :
print ra,dec,objects["HOLETYPE"][o],objects["OBJECT"][o],"not found"
#sys.exit(12)
continue
if i.size > 1 :
print ra,dec,"ambiguous"
print holes["ra"][i]
print holes["dec"][i]
sys.exit(12)
continue
#print ra,dec,holes["ra"][i[0]],holes["dec"][i[0]],holes["LAMBDAEFF"][i[0]]
objects["LAMBDAEFF"][o]=holes["LAMBDAEFF"][i[0]]
# remove entries with no lambdaeff
tmp={}
for k in objects.keys() :
tmp[k]=objects[k][objects["LAMBDAEFF"]>3000]
objects=tmp
#print "DEBUG"
#sys.exit(12)
ra=objects["ra"]
dec=objects["dec"]
xfoc=objects["xfoc"]
yfoc=objects["yfoc"]
ha_design=doc["ha"]
ra0=doc["raCen"]
dec0=doc["decCen"]
mjd=doc["mjdDesign"]
print "design MJD=%d HA=%f ra=%f dec=%f"%(mjd,ha_design,ra0,dec0)
# APO lat=32.7797556 in plate_refrac.pro (also height = 2797 , airtemp = 5.)
latitude=32.7797556
# optical distortion
# from platedesign/trunk/pro/plate/get_platescale.pro
platescale = 217.7358
distortion = OpticalDistortion(platescale)
chromatic_distortion_scale = params["CHROMATIC_DISTORTION_SCALE"]
# only reference for wavelength 5400A I could find is in code platedesign/trunk/pro/plate/adr.pro
lrg=np.where(objects["OBJECT"]=="GALAXY")[0]
elg=np.where(objects["OBJECT"]=="NA")[0] # it's sad ...
qso=np.where(objects["OBJECT"]=="QSO")[0]
star=np.where(objects["OBJECT"]=="SPECTROPHOTO_STD")[0]
guide=np.where(objects["HOLETYPE"]=="GUIDE")[0]
nobj=xfoc.size
wave_design=objects["LAMBDAEFF"]
wave_obs=params["OBSERVED_GUIDE_WAVE"]*np.ones((nobj))
wave_obs[lrg]=params["OBSERVED_LRG_WAVE"]
wave_obs[elg]=params["OBSERVED_ELG_WAVE"]
wave_obs[qso]=params["OBSERVED_QSO_WAVE"]
wave_obs[star]=params["OBSERVED_STAR_WAVE"]
wave_obs[guide]=params["OBSERVED_GUIDE_WAVE"]
ha_obs = params["OBSERVED_HA"]
# for design
alt0_design,az0_design = hadec2altaz(ha_design, dec0, latitude, params["DESIGN_GUIDE_WAVE"])
print "Design ALT (ref wave)=",alt0_design
print "Design AZ (ref wave)=",az0_design
# rotation of plate to get vertical dec
altfid,azfid = hadec2altaz(ha_design, dec0+1.5, latitude, params["DESIGN_GUIDE_WAVE"])
xfid,yfid = altaz2xy(altfid,azfid,alt0_design,az0_design,platescale)
rotation_angle = np.arctan2(xfid,yfid)
crot_design = np.cos(rotation_angle)
srot_design = np.sin(rotation_angle)
# same for obs
alt0_obs,az0_obs = hadec2altaz(ha_obs, dec0, latitude, params["DESIGN_GUIDE_WAVE"])
print "Obs ALT (ref wave)=",alt0_obs
print "Obs AZ (ref wave)=",az0_obs
# rotation of plate to get vertical dec
altfid,azfid = hadec2altaz(ha_obs, dec0+1.5, latitude, params["DESIGN_GUIDE_WAVE"])
xfid,yfid = altaz2xy(altfid,azfid,alt0_obs,az0_obs,platescale)
rotation_angle = np.arctan2(xfid,yfid)
crot_obs = np.cos(rotation_angle)
srot_obs = np.sin(rotation_angle)
# compute, at design hour angle = ha_design
xdesign=np.zeros((nobj))
ydesign=np.zeros((nobj))
alt_design=np.zeros((nobj))
az_design=np.zeros((nobj))
# compute, at observed hour angle = ha_obs
xobs=np.zeros((nobj))
yobs=np.zeros((nobj))
alt_obs=np.zeros((nobj))
az_obs=np.zeros((nobj))
selection=range(nobj)
for o in selection :
x,y,alt,az = hadec2xy(ha_design-(ra[o]-ra0),dec[o],alt0_design,az0_design,crot_design,srot_design,latitude,platescale,distortion,wave_design[o])
xdesign[o]=x
ydesign[o]=y
alt_design[o]=alt
az_design[o]=az
x,y,alt,az = hadec2xy(ha_obs-(ra[o]-ra0),dec[o],alt0_obs,az0_obs,crot_obs,srot_obs,latitude,platescale,distortion,wave_obs[o],chromatic_distortion_scale)
xobs[o]=x
yobs[o]=y
alt_obs[o]=alt
az_obs[o]=az
file=open(args.outfile,"w")
for k in params :
file.write("#PARAM %s %f\n"%(k,params[k]))
# compare plate design
dx0=xdesign-xfoc-np.mean(xdesign[guide]-xfoc[guide])
dy0=ydesign-yfoc-np.mean(ydesign[guide]-yfoc[guide])
dr0=np.sqrt(dx0**2+dy0**2)/platescale*3600. # arsec
file.write("#RESULT MEAN_PY-IDL_OFFSET_ARCSEC %f\n"%np.mean(dr0))
file.write("#RESULT RMS_PY-IDL_OFFSET_ARCSEC %f\n"%np.std(dr0))
# compute spectro ratio
# test
if False :
print "testing the code"
angle=5./180.*math.pi
scale=0.05
xshift=0.2*(platescale/3600.) # mm
yshift=-0.1*(platescale/3600.) # mm
ca=math.cos(angle)
sa=math.sin(angle)
xobs=(1.+scale)*(ca*xdesign-sa*ydesign)+xshift
yobs=(1.+scale)*(sa*xdesign+ca*ydesign)+yshift
# 4 parameters : 2 shifts, 1 angle, 1 scale
xder=np.zeros((4,xobs.size))
yder=np.zeros((4,yobs.size))
# model :
# dx= xobs - [ (1.+scale)*(ca*xdesign-sa*ydesign)+xshift ]
# dy= yobs - [ (1.+scale)*(-sa*xdesign+ca*ydesign)+yshift ]
mm2arcsec = 3600./platescale
xshift=np.mean(xobs[guide]-xdesign[guide])
yshift=np.mean(yobs[guide]-ydesign[guide])
print "starting with xshift=%f arcsec, yshift=%f arcsec"%(xshift*mm2arcsec,yshift*mm2arcsec)
angle=0.
scale=0.
ca=1.
sa=0.
dx= xobs - ( (1.+scale)*(ca*xdesign-sa*ydesign)+xshift )
dy= yobs - ( (1.+scale)*(sa*xdesign+ca*ydesign)+yshift )
chi2=1e12
for loop in range(100) :
xder[0]=1. # xshift
xder[1]=0. # yshift
xder[2]=(1.+scale)*(-sa*xdesign-ca*ydesign) # angle
xder[3]= (ca*xdesign-sa*ydesign)# scale
yder[0]=0. # xshift
yder[1]=1. # yshift
yder[2]=(1.+scale)*(ca*xdesign-sa*ydesign) # angle
yder[3]=(-sa*xdesign+ca*ydesign) # scale
w=1./(0.01/3600.*platescale)**2 # mm-2 , target error = 10 marcsec
A=np.zeros((4,4))
B=np.zeros((4))
for i in guide :
A += w*( np.outer(xder[:,i],xder[:,i]) + np.outer(yder[:,i],yder[:,i]) )
B += w*( dx[i]*xder[:,i] + dy[i]*yder[:,i] )
Ai=np.linalg.inv(A)
X=Ai.dot(B)
# update
xshift+=X[0] # mm
yshift+=X[1] # mm
angle+=X[2] # rad
scale+=X[3] # scale
ca=math.cos(angle)
sa=math.sin(angle)
dx= xobs - ( (1.+scale)*(ca*xdesign-sa*ydesign)+xshift )
dy= yobs - ( (1.+scale)*(sa*xdesign+ca*ydesign)+yshift )
previous_chi2=chi2
chi2=np.sum(w*dx[guide]**2)+np.sum(w*dy[guide]**2)
ndata=2*guide.size
dchi2=previous_chi2-chi2
print 'loop %d xshift=%f" yshift=%f" angle=%f deg scale=%f chi2/ndata=%f dchi2=%f'%(loop,xshift*mm2arcsec,yshift*mm2arcsec,angle*180/math.pi,scale,chi2/ndata,dchi2)
if abs(dchi2)<0.01 :
break
dr=np.sqrt(dx**2+dy**2)/platescale*3600. # arsec
dflux=np.exp(-dr**2/2./params["FIBER_LOSS_SIGMA_ARCSEC"]**2)
print "mean rms dr= %s %s arsec"%(np.mean(dr),np.std(dr))
file.write("#RESULT MEAN_RA %f\n"%np.mean(ra))
file.write("#RESULT MEAN_DEC %f\n"%np.mean(dec))
file.write("#RESULT MEAN_DESIGN_ALT %f\n"%np.mean(alt_design))
file.write("#RESULT MEAN_DESIGN_AZ %f\n"%np.mean(az_design))
file.write("#RESULT MEAN_OBSERVED_ALT %f\n"%np.mean(alt_obs))
file.write("#RESULT MEAN_OBSERVED_AZ %f\n"%np.mean(az_obs))
file.write("#RESULT MEAN_OBSERVED-DESIGN_OFFSET_ARCSEC %f\n"%np.mean(dr))
file.write("#RESULT RMS_OBSERVED-DESIGN_OFFSET_ARCSEC %f\n"%np.std(dr))
for obj in ["GALAXY","QSO","SPECTROPHOTO_STD","NA"] :
n1=np.where((objects["OBJECT"]==obj)&(objects["HOLETYPE"]=="OBJECT")&(ydesign<0))[0] # spectro1 has yfoc<0
n2=np.where((objects["OBJECT"]==obj)&(objects["HOLETYPE"]=="OBJECT")&(ydesign>0))[0] # spectro2 has yfoc>0
ratio12=0
if n1.size>0 and n2.size>0 :
ratio12=np.mean(dflux[n1])/np.mean(dflux[n2])
print "ratio 1/2 for %s = %f"%(obj,ratio12)
file.write("#RESULT RATIO12_%s %f\n"%(obj,ratio12))
lambdaeff=0.
n=np.where((objects["OBJECT"]==obj))[0] # spectro1 has yfoc<0
if n.size>0 :
lambdaeff=np.mean(objects["LAMBDAEFF"][n])
file.write("#RESULT LAMBDAEFF_%s %f\n"%(obj,lambdaeff))
file.write("#KEYS ra dec xfoc yfoc wavedesign xdesign ydesign altdesign azdesign waveobs xobs yobs altobs azobs hole obj\n")
for o in selection :
file.write("%f %f %f %f %f %f %f %f %f %f %f %f %f %f %s %s\n"%(ra[o],dec[o],xfoc[o],yfoc[o],wave_design[o],xdesign[o],ydesign[o],alt_design[o],az_design[o],wave_obs[o],xobs[o],yobs[o],alt_obs[o],az_obs[o],objects["HOLETYPE"][o],objects["OBJECT"][o]))
file.close()
print "wrote",args.outfile
if __name__ == '__main__':
main()