-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
executable file
·188 lines (150 loc) · 5.1 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
### -- additional functions
## -- IMPORTS
import glob
import os
import sys
from astropy.io import ascii
from astropy.io import fits
import matplotlib.pyplot as plt
import numpy as np
## -- FUNCTIONS
def plot_light_curve(data_table, name):
""" Plots the light curve.
Parameters
----------
data_dir : str
The path to the data.
name : str
The output plot name.
"""
data_dict = dict(ascii.read(data_table))
data_tups = []
for key in data_dict:
if 'sum' in key:
filename = key.split('_sum')[0] + '_ima.fits'
mjd = fits.getval(filename, 'expstart', ext=0)
file_sum = np.nansum(data_dict[key])
y_err = np.sqrt(file_sum)
data_tups.append((mjd, file_sum, y_err))
plt.errorbar([tup[0] for tup in data_tups], [tup[1] for tup in data_tups],
yerr=[tup[2] for tup in data_tups], fmt='.', color='black',
alpha=.5)
plt.xlabel('MJD')
plt.ylabel('Sum')
plt.savefig(name)
plt.clf()
def plot_cr_comparisons(data_path):
""" Plots CR flagging comparisons for the directory
at hand.
Parameters
----------
data_path : str
Path to the data.
"""
if not os.path.exists(os.path.join(data_path, 'cr_flagging')):
os.makedirs(os.path.join(data_path, 'cr_flagging'))
files = glob.glob(os.path.join(data_path, '*crcorr*'))
for cr_file in files:
root = cr_file.split('_crcorr')[0].split('/')[-1]
new_file = os.path.join(data_path, 'cr_flagging/{}_crompare.png'.format(root))
pre_flag = ''.join(cr_file.split('_crcorr2'))
diff = fits.getdata(pre_flag, ext=1) - fits.getdata(cr_file, ext=1)
plt.imshow(diff)
plt.title(root)
plt.tight_layout()
plt.savefig(new_file)
plt.clf()
print('CR comparison plot written to : {}.'.format(new_file))
def create_binned_light_curve(data_table, bin_range):
"""Match a wavelength bin to the nearest pixel and sum
over that bin.
Parameters
----------
data_table : str
The path to the data.
bin_range : tuple
Tuple with (start, stop) of the wavelength range.
Returns
-------
mid_bin : float
The middle of the bin.
bin_flux : np.array
A sum of the flux through each bin.
mjd : np.array
The mjd for each point.
"""
mjd, bin_flux = [], []
data = dict(ascii.read(data_table))
keys = list(set([key.split('_')[-2] for key in data.keys()]))
for key in keys:
filename = '{}_ima.fits'.format(key)
mjd.append(fits.getval(filename, 'expstart', ext=0))
wv = data['{}_wv'.format(key)]
flux = data['{}_sum'.format(key)]
min_wv = min(wv, key=lambda x:abs(x-bin_range[0]))
max_wv = min(wv, key=lambda x:abs(x-bin_range[1]))
mindex = np.where(wv == min_wv)[0][0]
maxdex = np.where(wv == max_wv)[0][0]
bin_flux.append(np.sum(flux[mindex:maxdex+1]))
mid_bin = np.mean([bin_range[0], bin_range[1]])
return mid_bin, bin_flux, mjd, (mindex, maxdex)
def plot_spectrum_overlay(data_table, name):
""" Plots the overlaid spectrum.
Parameters
----------
data_table : str
The name of the data table.
name : str
What to call the plot.
"""
data = ascii.read(data_table)
wvs = sorted([key for key in data.keys() if 'wv' in key])
sums = sorted([key for key in data.keys() if 'sum' in key])
for wv_key, sum_key in zip(wvs, sums):
plt.plot(data[wv_key], data[sum_key])
plt.savefig('{}.png'.format(name))
plt.clf()
def drop_first_of_orbit(data_table, n_orbits, remove=False):
""" Drops the first exposure in each orbit.
Parameters
----------
data_table : str
The data file to read in.
n_orbits : str
The number of orbits in the transit.
remove : int, optional
If set, removes the nth orbit.
Returns
-------
dropped_mjd : list
An array of the mjd without the first of the orbit.
dropped_flux : list
An array of the flux without the first of the orbit.
"""
data = ascii.read(data_table)
mjd, flux = data['mjd'], data['flux']
# Sort by mjd
sorted_tups = sorted(list(zip(mjd, flux)), key=lambda x: x[0])
mjd, flux = [tup[0] for tup in sorted_tups], [tup[1] for tup in sorted_tups]
diffs = np.diff(mjd)
big_diffs = sorted(diffs)[-(n_orbits-1):]
indeces = []
for diff in big_diffs:
indeces += [index for index in np.where(diff == diffs)[0]]
indeces = sorted(list(set(indeces)))
dropped_mjd = []
dropped_flux = []
init_index = 1
for count, index in enumerate(indeces):
index += 1
if count+1 != remove:
dropped_mjd += mjd[init_index:index]
dropped_flux += flux[init_index:index]
init_index = index+1
dropped_mjd += mjd[init_index:]
dropped_flux += flux[init_index:]
return dropped_mjd, dropped_flux
if __name__ == "__main__":
output_data= sys.argv[1]
name = 'test.png'
plot_light_curve(output_data, name)