-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtorch_embedding_net.py
150 lines (113 loc) · 5.6 KB
/
torch_embedding_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.preprocessing import StandardScaler
from torch.autograd.variable import Variable
from torch.utils.data import TensorDataset, DataLoader
from modeling.models.base_model import Model
class EmbeddingNet(torch.nn.Module, Model):
def __init__(
self, items_path, items_categories_path, shops_path,
non_embedding_features_num, num_epochs, batch_size
):
super(EmbeddingNet, self).__init__()
self.device = torch.device('cuda')
self.cols_in_order = ['item_id', 'item_category_id', 'shop_id']
self.cols_rest = None
self.standardizer = StandardScaler()
items = pd.read_csv(items_path)
items_categories = pd.read_csv(items_categories_path)
shops = pd.read_csv(shops_path)
embeds_size = 20
non_embedding_features_out = 196
items_size = items.shape[0]
items_categories_size = items_categories.shape[0]
shops_size = shops.shape[0]
self.num_epochs = num_epochs
self.batch_size = batch_size
self.embedding_items = torch.nn.Embedding(items_size, embeds_size)
self.embedding_categories = torch.nn.Embedding(items_categories_size, embeds_size)
self.embedding_shops = torch.nn.Embedding(shops_size, embeds_size)
self.input_rest = torch.nn.Linear(non_embedding_features_num, non_embedding_features_out)
self.hidden_concat = torch.nn.Linear(embeds_size * 3 + non_embedding_features_out, 50)
self.final = torch.nn.Linear(50, 1)
def forward(self, input):
item_indices = input[:, 0].long()
categories_indices = input[:, 1].long()
shops_indices = input[:, 2].long()
rest = input[:, 3:]
item_embeds = F.relu(self.embedding_items(item_indices))
categories_embeds = F.relu(self.embedding_categories(categories_indices))
shops_embeds = F.relu(self.embedding_shops(shops_indices))
rest_out = F.relu(self.input_rest(rest))
input_concat = torch.cat([item_embeds, categories_embeds, shops_embeds, rest_out], dim=1)
input_concat = F.relu(self.hidden_concat(input_concat))
input_concat = self.final(input_concat)
return input_concat
def preprocess_data(self, dataset):
index_cols = dataset[self.cols_in_order].to_numpy()
normalized_cols = self.standardizer.transform(dataset[self.cols_rest].to_numpy())
normalized = np.concatenate([index_cols, normalized_cols], axis=1)
normalized_wo_nan = np.nan_to_num(normalized)
return torch.from_numpy(normalized_wo_nan).float().to(self.device)
def fit(self, train, y_train, valid_set_tuple=None):
criterion = nn.MSELoss()
batches_num = len(train) / self.batch_size
# ~ 4 reports per epoch
batch_report_interval = batches_num // 4
self.cols_rest = sorted(list(set(train.columns.tolist()) - set(self.cols_in_order)))
self.standardizer.fit(train[self.cols_rest].to_numpy())
train_processed = self.preprocess_data(train)
train_dataset = TensorDataset(train_processed, torch.from_numpy(y_train.to_numpy()).to(self.device).float())
loader_train = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=0)
valid_set_tuple_postproc = None
if valid_set_tuple:
test, y_test = valid_set_tuple
valid_set_tuple_postproc = self.preprocess_data(test), torch.Tensor(y_test.to_numpy()).squeeze()
self.zero_grad()
self.train()
self.to(self.device)
optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)
for epoch in range(self.num_epochs):
running_loss = 0.0
for i, data in enumerate(loader_train, 0):
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs, labels = Variable(inputs.to(self.device)), Variable(labels.to(self.device))
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = self.forward(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if (i + 1) % batch_report_interval == 0:
print('[%d, %5d] train-loss: %.3f' % (epoch + 1, i + 1, np.sqrt(running_loss / batch_report_interval)))
running_loss = 0.0
if valid_set_tuple_postproc:
test, y_test = valid_set_tuple_postproc
results = self.transform(test, True, False)
test_loss = torch.sqrt(F.mse_loss(results.clamp(0, 20), y_test)).item()
print('[%d, %5d] test-loss: %.3f' % (epoch + 1, i + 1, test_loss))
print('Finished Training')
def transform(self, test, to_cpu=True, to_numpy=True):
# Depending on whether it's a monitoring phase or an actual prediction, different preparation is needed
if type(test) is not torch.Tensor:
test = self.preprocess_data(test)
test_loader = DataLoader(test, batch_size=6400, shuffle=False, num_workers=0)
self.eval()
result = []
for chunk in test_loader:
result.append(self.forward(chunk).squeeze().detach())
result = torch.cat(result)
if to_cpu:
result = result.cpu()
if to_numpy:
result = result.numpy()
self.train()
return result