-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_parse.py
64 lines (52 loc) · 1.88 KB
/
03_parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -----------------------------------------------
# 3. Data Parsing:
#
# Objective: Parse course data leveraging
# HTML elements structure.
#
# Tools/Resources: Use resources like the
# DOMParser, BeautifulSoup, or Regular Expressions.
# Beautiful Soup:
# https://www.crummy.com/software/BeautifulSoup/
# DOMParser:
# https://developer.mozilla.org/en-US/docs/Web/API/DOMParser
# RegEx:
# https://regexr.com
# https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
# -----------------------------------------------
import re
from bs4 import BeautifulSoup
# Read in the HTML content
with open("combined_northeastern_catalog.html", "r") as file:
html_content = file.read()
# Create BeautifulSoup object
soup = BeautifulSoup(html_content, "html.parser")
# Find the div containing the course list
course_list_div = soup.find("div", id="atozindex")
# Extract each course group
course_groups = course_list_div.find_all("ul")
parsed_courses = []
for group in course_groups:
# Extract the letter for this group
letter = group.find_previous_sibling("h2").text.strip()
# Extract each course in this group
courses = group.find_all("a")
for course in courses:
# Extract course code and name
full_name = course.text.strip()
code = re.search(r"\((.*?)\)", full_name).group(1)
name = re.sub(r"\(.*?\)", "", full_name).strip()
# Extract URL (relative path)
rel_url = course["href"]
# Compile course info
course_info = {
"letter": letter,
"code": code,
"name": name,
"rel_url": rel_url
}
parsed_courses.append(course_info)
# Write the parsed courses to a file
with open("parsed_courses.txt", "w") as file:
for course in parsed_courses:
file.write(str(course) + "\n")