forked from LupoLab/Luna.jl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasic_modeAvg.jl
52 lines (39 loc) · 1.46 KB
/
basic_modeAvg.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
using Luna
a = 13e-6
gas = :Ar
pres = 5
flength = 15e-2
τfwhm = 30e-15
λ0 = 800e-9
energy = 1e-6
grid = Grid.RealGrid(flength, λ0, (160e-9, 3000e-9), 1e-12)
m = Capillary.MarcatiliMode(a, gas, pres, loss=false)
aeff = let m=m
z -> Modes.Aeff(m, z=z)
end
densityfun = let dens0=PhysData.density(gas, pres)
z -> dens0
end
ionpot = PhysData.ionisation_potential(gas)
ionrate = Ionisation.ionrate_fun!_ADK(ionpot)
plasma = Nonlinear.PlasmaCumtrapz(grid.to, grid.to, ionrate, ionpot)
responses = (Nonlinear.Kerr_field(PhysData.γ3_gas(gas)),
plasma)
linop, βfun!, β1, αfun = LinearOps.make_const_linop(grid, m, λ0)
inputs = Fields.GaussField(λ0=λ0, τfwhm=τfwhm, energy=energy)
Eω, transform, FT = Luna.setup(grid, densityfun, responses, inputs, βfun!, aeff)
ppwin = Stats.peakpower(grid, Eω, (150e-9, 300e-9)) # peak power of dispersive wave
statsfun = Stats.default(grid, Eω, m, linop, transform;
gas=gas, windows=((150e-9, 300e-9),), userfuns=(ppwin,))
output = Output.MemoryOutput(0, grid.zmax, 201, statsfun)
Luna.run(Eω, grid, linop, transform, FT, output)
##
Plotting.pygui(true)
Plotting.stats(output)
Plotting.prop_2D(output)
Plotting.time_1D(output, [5e-2, 10e-2, 11e-2])
Plotting.spec_1D(output, [5e-2, 10e-2, 11e-2])
##
Plotting.spectrogram(output, 9.8e-2, :λ; trange=(-50e-15, 50e-15), λrange=(160e-9, 1200e-9),
N=512, fw=3e-15,
cmap=Plotting.cmap_white("viridis", n=48))