-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexample-distill.Rmd
173 lines (131 loc) · 6.18 KB
/
example-distill.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
title: "Distill basics"
subtitle: "Scientific and technical writing, native to the web"
output:
distill::distill_article:
author:
- first_name: Thomas
last_name: Mock
url: https://themockup.blog
toc: true
toc_depth: 3
toc_float: true
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
echo = TRUE,
code_folding = TRUE,
fig.retina = 2
)
```
## Package Setup
Before going through the tutorial, install and load {gtsummary}.
```{r pkg-setup, message = FALSE, warning=FALSE}
library(tidyverse)
library(gt)
library(gtExtras)
library(gtsummary)
library(palmerpenguins)
```
## Figures
Distill provides a number of options for laying out figures within your article. By default figures span the width of the main article body. We can show the examples via the `palmerpenguins` dataset. The palmerpenguins data contains size measurements for three penguin species observed on three islands in the Palmer Archipelago, Antarctica. <br>These data were collected from 2007 - 2009 by Dr. Kristen Gorman with the Palmer Station Long Term Ecological Research Program, part of the US Long Term Ecological Research Network. The data were imported directly from the Environmental Data Initiative (EDI) Data Portal, and are available for use by CC0 license (“No Rights Reserved”) in accordance with the Palmer Station Data Policy.
<aside>
The palmerpenguins R package contains two datasets that we believe are a viable alternative to Anderson’s Iris data (see `datasets::iris`).
```{r, echo = FALSE}
#| fig.alt='The `palmerpenguins` R package hex logo, it is the three heads of the species of palmer penguins with the name "palmer penguins" in the top right'
knitr::include_graphics("https://allisonhorst.github.io/palmerpenguins/man/figures/palmerpenguins.png")
```
</aside>
### `l-body`
The default, equal to the widt of the body of the text.
```{r, layout="l-body"}
bill_len_dep <- ggplot(data = penguins,
aes(x = bill_length_mm,
y = bill_depth_mm,
group = species)) +
geom_point(aes(color = species,
shape = species),
size = 3,
alpha = 0.8) +
geom_smooth(method = "lm", se = FALSE, aes(color = species)) +
theme_minimal() +
scale_color_manual(values = c("darkorange","purple","cyan4")) +
labs(title = "Penguin bill dimensions",
subtitle = "Bill length and depth for Adelie, Chinstrap and Gentoo Penguins at Palmer Station LTER",
x = "Bill length (mm)",
y = "Bill depth (mm)",
color = "Penguin species",
shape = "Penguin species") +
theme(legend.position = c(0.85, 0.15),
legend.background = element_rect(fill = "white", color = NA),
plot.title.position = "plot",
plot.caption = element_text(hjust = 0, face= "italic"),
plot.caption.position = "plot")
bill_len_dep
```
### `l-body-outset`
Slightly wider than the body.
```{r, layout="l-body-outset"}
mass_hist <- ggplot(data = penguins, aes(x = body_mass_g)) +
geom_histogram(aes(fill = species),
alpha = 0.5,
position = "identity") +
scale_fill_manual(values = c("darkorange","purple","cyan4")) +
theme_minimal() +
labs(x = "Body mass (g)",
y = "Frequency",
title = "Penguin body mass")
mass_hist
```
### `l-page`
Takes up the entire page.
```{r, layout="l-page"}
ggplot(penguins, aes(x = flipper_length_mm,
y = body_mass_g)) +
geom_point(aes(color = sex)) +
theme_minimal() +
scale_color_manual(values = c("darkorange","cyan4"), na.translate = FALSE) +
labs(title = "Penguin flipper and body mass",
subtitle = "Dimensions for male and female Adelie, Chinstrap and Gentoo Penguins at Palmer Station LTER",
x = "Flipper length (mm)",
y = "Body mass (g)",
color = "Penguin sex") +
theme(legend.position = "bottom",
legend.background = element_rect(fill = "white", color = NA),
plot.title.position = "plot",
plot.caption = element_text(hjust = 0, face= "italic"),
plot.caption.position = "plot") +
facet_wrap(~species)
```
## Example data set
We'll be using the [`trial`](http://www.danieldsjoberg.com/gtsummary/reference/trial.html) data set throughout this example.
* This set contains data from `r nrow(trial)` patients who received one of two types of chemotherapy (Drug A or Drug B).
The outcomes are tumor response and death.
```{r}
trial2 <-
trial %>%
select(trt, marker, stage)
```
### Inline results from tbl_summary()
First create a basic summary table using [`tbl_summary()`](http://www.danieldsjoberg.com/gtsummary/reference/tbl_summary.html) (review [`tbl_summary()` vignette](http://www.danieldsjoberg.com/gtsummary/articles/tbl_summary.html) for detailed overview of this function if needed).
```{r}
tab1 <- tbl_summary(trial2, by = trt)
tab1
```
> The median (IQR) marker level in the Drug A and Drug B groups are `r inline_text(tab1, variable = marker, column = "Drug A")` and `r inline_text(tab1, variable = marker, column = "Drug B")`, respectively.
If you display a statistic from a categorical variable, include the `level` argument.
### Inline results from tbl_regression()
Similar syntax is used to report results from [`tbl_regression()`](http://www.danieldsjoberg.com/gtsummary/reference/tbl_regression.html) and [`tbl_uvregression()`](http://www.danieldsjoberg.com/gtsummary/reference/tbl_uvregression.html) tables.
Refer to the [`tbl_regression()` vignette](http://www.danieldsjoberg.com/gtsummary/articles/tbl_regression.html) if you need detailed guidance on using these functions.
Let's first create a regression model.
```{r}
# build logistic regression model
m1 <- glm(response ~ age + stage, trial, family = binomial(link = "logit"))
```
Now summarize the results with `tbl_regression()`; exponentiate to get the odds ratios.
```{r}
tbl_m1 <- tbl_regression(m1, exponentiate = TRUE)
tbl_m1
```
> Age was not significantly associated with tumor response `r inline_text(tbl_m1, variable = age, pattern = "(OR {estimate}; 95% CI {conf.low}, {conf.high}; {p.value})")`.
For more details about inline code, review to the [RStudio documentation page](https://rmarkdown.rstudio.com/lesson-4.html).