forked from opencog/python-destin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_node.py
46 lines (39 loc) · 1.29 KB
/
test_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 2 2014
@author: teddy
"""
import numpy as np
rng = np.random
from node import *
def main():
myNode = Node(1, [2, 2]) # layer_num=1, LayerPos=[2,2]
# Prepare alg_params,InitNodebelief,InitNodeLearnedFeatures
N = 400
feats = 784
alg_params = {}
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
alg_params['D'] = D # an initial random input
alg_params['N'] = 400
alg_params['feats'] = feats
alg_params['training_steps'] = 10000
algorithm_choice = 'LogRegression'
alg_params['w'] = theano.shared(rng.randn(feats), name="w")
myNode.load_input(D)
myNode.init_node_learning_params(algorithm_choice, alg_params)
# myNode.do_node_learning('training')
#mylearning_algorithm = learning_algorithm(alg_params)
print "Multi-dim nodes example"
Row = 4
Col = 4
layer_num = 2
NodeArray = [[Node(layer_num, [i, j]) for j in range(Row)]
for i in range(Col)]
for I in range(Row):
for J in range(Col):
print(NodeArray[I][J].node_position)
NodeArray[I][J].load_input(D)
myNode.init_node_learning_params(algorithm_choice, alg_params)
# myNode.do_node_learning('training')
print(type(myNode.belief))
main()