forked from opencog/python-destin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode.py
107 lines (97 loc) · 4.37 KB
/
node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 2 2014
@author: teddy
"""
from clustering import *
from auto_encoder import *
class Node:
def __init__(self, layer_number, node_pos, cifar_stat={'patch_mean': [], 'patch_std': [], 'whiten_mat': []}):
self.layer_number = layer_number
self.node_position = node_pos
self.belief = []
# cifarStat = load_cifar(4)# to be used for Normalization and Whitening
# Purposes
self.patch_mean = cifar_stat['patch_mean']
self.patch_std = cifar_stat['patch_std']
self.v = cifar_stat['whiten_mat']
def init_node_learning_params(self, algorithm_choice, alg_params):
self.algorithm_choice = algorithm_choice
if algorithm_choice == 'Clustering':
cents_per_layer = alg_params['num_cents_per_layer']
# input_width = input_widths[layer_num]
if self.layer_number == 0:
input_width = 48
else:
input_width = cents_per_layer[self.layer_number - 1] * 4
self.learning_algorithm = Clustering(alg_params['mr'], alg_params['vr'], alg_params['sr'], input_width,
alg_params['num_cents_per_layer'][self.layer_number], self.node_position)
# mr, vr, sr, di, ce, node_id
else:
self.belief = np.ones((alg_params[self.layer_number][1], 1))
self.algorithm_choice = algorithm_choice
self.learning_algorithm = NNSAE(
alg_params[self.layer_number][0], alg_params[self.layer_number][1])
def load_input(self, In):
if self.layer_number == 0:
In = In - self.patch_mean
In = In / self.patch_std
In = In.dot(self.v)
self.input = In
def do_node_learning(self, mode):
if self.algorithm_choice == 'Clustering':
self.learning_algorithm.update_node(self.input, mode)
self.belief = self.learning_algorithm.belief
else:
self.learning_algorithm.train(self.input)
W = np.transpose((self.learning_algorithm.W + 0.00005)/np.sum((self.learning_algorithm.W + 0.00005),0))
input_ = self.input/np.sum(self.input,0)
# input_ = np.transpose(self.input)/np.sum(np.transpose(self.input),0)
# print np.shape(W)
# print np.shape(input_)
# activations = np.dot(W, input_) + 0.00005
dist = W - input_
sq_dist = np.square(dist)
norm_dist = np.sum(sq_dist, axis=1)
chk = (norm_dist == 0)
if any(chk):
self.belief = np.zeros_like(self.belief)
self.belief[chk] = 1.0
else:
norm_dist = 1 / norm_dist
belief = (norm_dist / sum(norm_dist)) # .reshape(np.shape(self.belief)[0], np.shape(self.belief)[1])
#belief = activations / (np.sum(activations))
self.belief = belief
# belief = np.maximum(activations, 0)
# self.belief = belief
# for K in range(activations.shape[0]):
# belief[K] = max(0.0, float((activations[K] - 0.025)))
# self.belief = np.asarray(belief)/np.sum(belief)
"""
def calcuatebelief(self, input_):
self.load_inputTonodes(input_, [4,4])
for I in range(len(self.nodes)):
for J in range(len(self.nodes[0])):
W = np.transpose(self.NNSAE.W)
Image = return_node_input(input_, [I*4, J*4], [4,4], 'Adjacent', 'Color')
activations = np.dot(W, np.transpose(Image))
activations = activations/sum(sum(activations))
self.nodes[I][J].Activation = activations
m = np.mean(np.mean(activations,1))
for K in range(activations.shape[0]):
self.nodes[I][J].belief[K,0] = max(0, (activations[K,0] - 0.025))
print self.nodes[0][0].belief"""
"""
def produce_belief(self, sqdiff):
"""
# Update belief state.
"""
normdist = np.sum(sqdiff / self.var, axis=1)
chk = (normdist == 0)
if any(chk):
self.belief = np.zeros((1, self.CENTS))
self.belief[chk] = 1.0
else:
normdist = 1 / normdist
self.belief = (normdist / sum(normdist)).reshape(1, self.CENTS)
"""