forked from opencog/python-destin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.py
94 lines (88 loc) · 4.07 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 3 2014
@author: teddy
"""
from node import *
from load_data import *
class Layer:
def __init__(self, layer_num, number_of_nodes, patch_mode=None, image_type=None):
self.patch_mode = patch_mode
self.image_type = image_type
self.layer_number = layer_num
self.number_of_nodes = number_of_nodes # Usually a list with two elements
Row = number_of_nodes[0]
Col = number_of_nodes[1]
if layer_num == 0:
nodes = [[Node(layer_num, [i, j], load_cifar(4)) for j in range(Row)] for i in range(Col)]
else:
nodes = [[Node(layer_num, [i, j]) for j in range(Row)] for i in range(Col)]
self.nodes = nodes
self.mode = []
def load_input(self, input_, R):
Ratio = R[0]
# Ratio equals to the number of lower layer units getting combined and being fed to the upper layer
if self.layer_number == 0:
Nx = 0 # X coordinate of the current node
for I in range(0, input_.shape[0], Ratio):
Ny = 0 # Y coordinate of the current node
for J in range(0, input_.shape[1], Ratio):
self.nodes[Nx][Ny].load_input(return_node_input(input_, [I, J], Ratio, self.patch_mode,
self.image_type)) # returns inputs to the node located at Position [Nx,Ny]
Ny += 1
Nx += 1
else:
Nx = 0 # X coordinate of the current node
Ny = 0 # Y coordinate of the current node
for I in range(0, len(input_[0]), Ratio):
Ny = 0
for J in range(0, len(input_[1]), Ratio):
input_temp = np.array([])
for K in range(I, I + Ratio):
for L in range(J, J + Ratio):
input_temp = np.append(input_temp, np.asarray(input_[K][
L].belief))# Combine the beliefs of the nodes passed
self.nodes[Nx][Ny].load_input(np.ravel(input_temp))
Ny += 1
Nx += 1
def init_layer_learning_params(self, algorithm_choice, alg_params):
for I in range(len(self.nodes)):
for J in range(len(self.nodes[0])):
self.nodes[I][J].init_node_learning_params(algorithm_choice, alg_params)
def do_layer_learning(self):
for I in range(len(self.nodes)):
for J in range(len(self.nodes[0])):
self.nodes[I][J].do_node_learning(self.mode)
def train_typical_node(self, input_, windowSize, algorithm_choice):
TN = self.nodes[0][0]
[H, V] = windowSize
if self.layer_number == 0:
X = input_.shape[0] - H + 1
Y = input_.shape[1] - V + 1
for I in range(X):
for J in range(Y):
TN.load_input(
return_node_input(input_, [I, J], H, self.patch_mode, self.image_type))
TN.do_node_learning(self.mode)
else:
X = len(input_[0]) - H + 1
Y = len(input_[1]) - V + 1
for I in range(X):
for J in range(Y):
input_temp = np.array([])
for K in range(I, I + H):
for L in range(J, J + V):
input_temp = np.append(
input_temp, np.array(np.ravel(input_[K][L].belief)))
# Combine the beliefs of the nodes passed
TN.load_input(np.ravel(input_temp))
TN.do_node_learning(self.mode)
self.nodes[0][0] = TN
def share_learned_parameters(self):
for I in range(len(self.nodes)):
for J in range(len(self.nodes[0])):
self.nodes[I][J] = self.nodes[0][0]
def update_beliefs(self):
for I in range(len(self.nodes)):
for J in range(len(self.nodes[0])):
self.nodes[I][J].do_node_learning(False)