diff --git a/infinite_horizon_job_search/odu.ipynb b/infinite_horizon_job_search/odu.ipynb index d090673..613dcad 100644 --- a/infinite_horizon_job_search/odu.ipynb +++ b/infinite_horizon_job_search/odu.ipynb @@ -21,9 +21,9 @@ "import matplotlib.pyplot as plt\n", "from lininterp import interp1d\n", "from numba import njit, vectorize, prange\n", - "\n", + "from interpolation import interp\n", "from math import gamma\n", - "from scipy.stats import beta\n" + "from scipy.stats import beta" ] }, { @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -63,24 +63,19 @@ " r = gamma(a + b) / (gamma(a) * gamma(b))\n", " return r * x**(a-1) * (1 - x)**(b-1)\n", " \n", - " @njit\n", - " def p_rvs():\n", - " return np.random.beta(a, b)\n", - " \n", - " return p, p_rvs\n", - "\n" + " return p" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXd4VFX6xz9n0ntIh1BCCKH3IIiCgGDvgop111Vw7asutt3VdfengrqWtaKubW0YFewKglgpCYTeQ0khIYX0PnN/f5wJsCgkJDNz5t45n+e5z72ZO5n53mTmO2fe8573FYZhoNFoNBrzY1MtQKPRaDSuQRu6RqPRWARt6BqNRmMRtKFrNBqNRdCGrtFoNBZBG7pGo9FYBG3oGo1GYxG0oWs0Go1F0Iau0Wg0FsHfk08WFxdnpKSkePIpNRqNxvRkZ2eXGoYR39b9PGroKSkpZGVlefIpNRqNxvQIIfa053465KLRaDQWQRu6RqPRWARt6BqNRmMRtKFrNBqNRdCGrtFoNBZBG7pGo9FYBG3oGo1GYxE8moeucQONNVC8EYo3yH1dKTTXy80/GCKSIKIrxKRCjxPkXgjVqjUmoanFwYbCStbmVbCvsoHiqgZKqhuxCUFwgB8hgX507xJC/6QIBnaNJDU+HD+bfn2pQhu6GWmogm1fwcaPYcdisDe1/3fDEqD3eBh8MaRNBf9A9+nUmJKS6kY+W1fIVxuKyMmroLHF0e7fjY8I4szBSZw9pCsZKTHa3D2M8GST6IyMDEOvFO0ENfvh52dg1avQXOe8UUDiYEgaDImDIDIZAkIhIBiaG6C6EKr2wf5NsHe5HMG3EhwtjX3sjRCXpuSSNN6BYRgs2bKfN37Zw087SrE7DvlCWkI4o3p2oVdcKIkRwcRHBAFQ32ynrqmF3JJaNu+rZkNBJUVVDQd/LyU2lJsmpXHhiGT8/XR0tzMIIbINw8ho837a0E1AQxUsmyONvKVe3tZzHAy+CAacK8Mq7cEwoGwHbPkc1n8gwzQACBh4Poy/A7oOc8slaLyTFruDz9fv44XvdrKlqBoAf5tgYr94zhuezMlpccSEte9bnGEYbCio4rP1hXy2dh8FFfK12jMmlD9N7csFw5MROtzXIbShW4Udi+GT26AqX/7c7yw4ZTZ0G9H5xy7eCCtehJx3wdEsbxt6KUz5O0R27fzja7yan3eW8tCnmw4aeWJkENednMq0Ud3p0k4TPxotdgcLcwp5dukOdpXWAjCpXzyPXDSUpKjgTmv3NbShm52mWvjqHlj9pvy520g451+uMfIjqSqEn5+FVa+AvRECwmDCnXDiLTrGbkEKKur552eb+HJDEQDdu4Rw86Q0LhyZTJC/n0ufq8Xu4KPVBfzz801UNbQQEezPg+cO4uJR3V36PFZHG7qZqSyAdy+DonXgFwiT7pPm6ufmOewDu+Hr+2HLZ/LnpCFw4UsyNq8xPYZh8EF2Pg99uomaxhZCAvy4eXIafzi5N8EBrjXyIymuauC+j9bz7Zb9AFx7Um/uP3uAnjRtJ9rQzUrBanh3BtQUQZfecNk7kDjQsxp2LoVPb4OKPc4PlPth3C1gc++bXuM+SqobufejdSzeLA319EGJPHjeILpGhXhMg2EYvL8qj78u3ECz3WBy/wSemTGC8CCdbNcW2tDNyPbF8P6VcuKz18lw6VsQGqNGS2M1fPMXyH5d/txnMlz8qjo9mg6zclc5N72zmpLqRiKC/Xno/EFKJyhX5JYx67/ZVNQ10z8pgrevG0NseJASLWahvYZ+zFwiIUS0EGKac5tzlPtME0JMEULM7qhYDZD7Hbx3uTTz4VfCVR+rNc+gCDj3abgiE0LjYOcSeOkU+Q1CYwoMw+DVH3cx4+XllFQ3MqZ3DF/fPoELR3RXmm0yJjWWhTedRGp8GFuKqrny1ZVU1B3HWgrNUWkrOfQSIMYwjEwAIcTMw08KIaYBGIaxGKgQQkxxi0qrs/tHeOcyOSGZcS2c/6z3TEb2nQqzlkHyKKjcC/85Hda+p1qVpg0amu3c/n4O//hsE3aHwawJqbx93Ri6RXsuxHIsesWG8d7MsaTGhbF5XxVXvbqSyvpm1bJMzzEN3TCMeYZhzHP+mAosPuIuo4Fc53EuMPLIxxBCzBRCZAkhskpKSjqr13rkZ8PblxwamZ/1hPctzY/qDr//Un7Y2Jvg41nw3RyZ167xOg7UNnHVqytYmFNIWKAfL1wxknvPGuB1i3sSIoJ55/qx9IwJZX1BJdf8ZyX1TXbVskxNu/7DQohUoNwwjNwjTkUf8XPskb/r/FDIMAwjIz6+zR6nvkVVIbw3A5prYch0OO8ZsHnXm+4g/kFwzpNw5mMgbPDdw7DwJmjRX5W9iT1ltVz8ws+s2n2ApMhgMv84jjOHeO+agqSoYN65fgzJ0SHk5FVwV+ZaPDmvZzXa6x7TDMOY9Ru3VwB6lqwjNNfLmHlNMaSMhwteMEcWyZiZcOnb4B8COW/La2iuV61KA2zeV8XFL/xMbmktA7pGsuCmkxjQNVK1rDbp3iWU134/mvAgfz5ft4/nlu5QLcm0tGnoQohphmHMdR4fGSNfxaFReiqwyLXyLIphwCe3QuEaiO4J098AvwDVqtpP/7Pg959DaCzsWARvT5dZMRpl5ORVcNm85ZTWNHFyWhzzZ4011YrM9MQInrp0OELA499sY9GmYtWSTElbWS5TgDlCiGwhRPZhty8CcE6WprYavXNyVNMWy1+A9fPliszL3oWwX0WqvJ/kUfC7LyA8CXb/AG9eAPUHVKvySVbklnHFy8uprG9myoBEXrkmg4hgEw0QnEwZmMhdp/UD4Pb31pBbUqNYkfnQeeiepmgDvDxJTi5e8qYsimVmynPhjfNlBkzX4XD1Qgg5cmpF4y5W5JZxzWsraWh2cN6wbjxxyTACvGzy83gwDIOb313D5+v2Max7FJl/HGfq63EVLslD17iY5gb46Hpp5qN+Z34zB9kw49ovoUsK7MuBt6fp8IuHyN5zgGtfX0VDs4Npo7rz5KXDTW9+QggevnAI3aKCWZtfyb+/3a5akqkw93/fbCz5h6xLHtMHTn9YtRrXEdUdrvkUonpA/iqZhtlUq1qVpVmXX8Hv/rOS2iY7FwzvxpyLh1qmLkpUSABPXCLj6c8u3UH2Hh3Kay/a0D1F7nfwy7Mg/OCilyEwTLUi1xLdU5p6RDfY+zO8d4VOaXQT24qruerVlVQ3tnD2kK48Pn2YZcy8lRP7xDJzfCoOA/70fg41jS2qJZkCbeieoLleFrsCWcu8+yi1etxFTG9p6mHxkLsUFtwAjva3L9O0TWFFPdf8Z6VzAjSBpy4b7nULhlzFHaelM6BrJHvL63hq0TbVckyBNV8J3sYP/5KlaRMGwvg7VatxL3FpcOWHEBgBGz6Er+/VK0pdROsK0H2VDYxO6cKzl480fcz8WAT5+zH34qHYBLz2824276tSLcnrse6rwVso3QE/PSWPz/6XufLNO0rXYXDZ27L07ooX4cd/qVZkeuqb7Fz7xip2ltTSLzGCV64e7fYa5t7AkO5RXDW2F3aHwV8WbMDh0IODY6EN3Z0YBnxxp8xqGX4F9DpRtSLPkXqKnCtAwLcPwfpM1YpMi8Nh8Kf3c1izt4Lk6BDe/MMJRIX6wMDAyR2n9SMuPIjsPQfIzM5XLcer0YbuTjZ+JCdDg6Nh6kOq1XieQRccyuZZcCPsXa5Wj0mZ89UWvtpYRESwP29cO5rESPOsAHUFUSEB/PWcAQA88uVmDtTqyfajoQ3dXTQ3wDd/k8dTHoCwOLV6VDH2jzD6Olka+N0ZULZTtSJT8faKPbz0fS7+NsFLV44iLSFCtSQlnDesGyemxnKgrpmndW76UdGG7i5WvQJV+ZAwCEZeo1qNOoSAM+ZA2lSoL4d3LoX6CtWqTMFPO0r528KNADx84RDGpfnooAC54Oiv5wxECPkhl1dep1qSV6IN3R3UV8APj8vjKQ+ao4qiO/Hzh+mvyQ+3su3w4XXg0HWvj8WeslpufHs1dofBDaf04ZLRPVRLUs7AbpFcODyZZrvBE99sVS3HK9GG7g5+eloWqup1kuz4o5Et7Wa8AyExskLjt39XrchrqWls4fo3s6isb+bU/gnMPr2faklew5+mphPoZ2NBTiEbCytVy/E6tKG7mqp9spoiwJS/e1/3IZV0SZEFyWz+8kNv3XzViryO1oyWbcU1pCWE89Rlw7FZbBVoZ+gRE8qVY3sBMPcrPUo/Em3ormbZo7Kd3IBzocdo1Wq8j97j4YxH5fEnt8C+tWr1eBnPLNnOok3FRIUE8MrV5iyD625unpxGeJA/y7aV8PPOUtVyvApt6K6kMh/WvC1btE3+m2o13svo62Dk1dDSAO9fBXXlqhV5BUu37Ofpb7cjBPx7xghS4ixW78dFxIQFMmtCKgDP6IyX/0Ebuiv56RlwNMOgCyE+XbUa70UI2Zu02wio2AMfzfT5mi97y+q47b01GAbcOTWdCem6/+6xuOakFCKC/FmeW072Hj0gaEUbuquoKYHVb8jjk+9Qq8UMBATLeHrrJOmyR1UrUkZ9k51Z/82mqqGFKQMSuXFimmpJXk9kcABXj5Ox9OeW6rUNrWhDdxXLn5MhhPQzIWmwajXmILonTHtVhqiWzYUdvtnB8IFPNrB5XxUpsaE8cckwPQnaTq49qTfBATaWbNmvM16caEN3BfUVsPIVeWz1aoqups9kmHgfYMjQS2WBakUe5cPsfOZn5RPkb+OFK0cRFaInQdtLbHgQM07oCcDz3+lROmhDdw0rX4amaug9QWe2dITxd0pjryuDD/8Adt9oZrC9uJq/LNgAwEPnD2JA10jFiszHzAmpBPgJvli/j526qbQ29E7T3CBLxIIenXcUm01WZozoCnt/ka36LE5dUws3vr2a+mY7F41I5pIMvRK0I3SNCuHikd0xDHj5+1zVcpSjDb2zbPgQ6kohaSj0PkW1GvMSFgfT/iNb9P30FGy3djz9gYUb2b5fLh7654WDEXoBWoe5brxMYVyQU+DzlRi1oXcGwzg0Oh9zg14V2ll6jYNJ98njj2dBdZFaPW5iYU4BH2TLuPlzl48kNNBftSRTk5YQzoT0eBqaHbyfladajlK0oXeGvcuhaB2ExsLgi1WrsQYn/0l+06krlaZusfz0PWW13P+xjJs/cO4g+iX5ZjlcV/P7cSkAvPXLHlrs1nrNHA/a0DtD6+h81O9lXrWm89j84KJ5EBonm4O0tu+zAE0tDm55dw01jS2cPaQrM07QcXNXcUp6PCmxoRRU1LN4c7FqOcrQht5RKvNh86ey0NToP6hWYy0ikuBC54flkn9CfpZaPS7iiUVbWZdfSXJ0CA9fNETHzV2IzSa4xjlKf+2n3Uq1qEQbekdZ9SoYdhh4PkR2U63GevSdCmNvkn/jD6+DRnOnpP28o5R53+fiZxM8M2O4zjd3A9NGdSc8yJ8Vu8rZVFilWo4StKF3hJbGQ8v8x9ygVouVmfIAJA6GA7vgq7tVq+kwFXVN3DF/LYYBt0xOY1SvGNWSLElEcADTRnUH4K3lu9WKUYQ29I6w5XO5CCZxCHTXC4nchn8QXPwK+AfDmv/CxgWqFR03hmFw70frKapqYGTPaG6epOu0uJPWWumf5BRS2+gbC9QORxt6R1jzltyPvFqnKrqbhAFw2j/l8ae3mq40wAdZ+Xy5oYjwIH+eunQE/n76LedO0hLCyejVhdomO5+v36dajsfRr67jpWIv7FwKfkEwdLpqNb7B6Oug72nQUAkL/miaVMa9ZXX8/VPZ5Pnv5w2iZ2yoYkW+QWv/1fdX+V5Oujb042XN24AhOxKFdFGtxjcQAs57Vub771oGK+epVtQmdofBHfNzqG2yc/aQrlw0Mlm1JJ/h7CFdCQv0I3vPAXbsr1Ytx6NoQz8eHHbIeVsej7xarRZfIyIRzn1aHi9+APZvUaunDV76fidZew6QEBHEPy/QS/s9SViQP+cNl5ln87PyFavxLNrQj4fcpVCZB9G9IGW8ajW+x4BzYfiVsu78R9dDi3fW7dhQUMmTi7YB8Nj0YXQJC1SsyPdoLXb2YXY+TS3mCNG5Am3ox8Pq1snQq2SFQI3nOeMR2RijaB18P1e1ml/R0Gznjvk5NNsNrj6xF6foVnJKGN4jmn6JEZTVNrFki++sHNWu1F7qymW6orDB8CtUq/FdgiPhghcBAT/8C/KzVSv6H55ctI1txTX0jgvj3jMHqJbjswghDk6O+lLYRRt6e9m0UDaATp2oV4aqJuUkONG5ivTjWdBcr1oRAFm7y5n3Qy42AU9cMoyQQD/Vknya84d3w88m+H5bCeU+UlZXG3p7WZ8p90N0qqJXMPmvENcPyrbDtw+pVkNtYwt3fiBXg95wSh9G9tQZUKqJCw/i5LQ4WhwGX/hITro29PZQmQ97fpQrFvufo1qNBmR1ywtflA0xlj8Pu39UKufRL7ewp6yO/kkR3Dalr1ItmkOc78x2WZhjrgVpHaVNQxdCTBFCLDrG+QNCiGwhxBzXSvMiNnwo9+lnyBiuxjtIHgkT7pLHC25UVsDrpx2lvLV8DwF+gn9dMpwgfx1q8RZOG5REcICNVbsPkH+gTrUct9OmoRuG0VYvsOmGYYwyDMO81ZPaYv0Hcq/DLd7H+LsgaQhU7JH56R6muqGZ2ZnrALh1cl8GdtMf+N5EeJA/UwYkAvDpWuuHXVwRcokWQqQe7aQQYqYQIksIkVVSUuKCp/Mw+7dA0XoIjpIlXTXehX8gXPAC2AJg1SuyKYYHefiLLRRU1DMkOYobJvbx6HNr2sf5w+UqXV8Iu7jC0GOAciHES7910jCMeYZhZBiGkREfb8Kc3NbR+cDzZfU/jfeRNAROcX5BXHgzNHimFvb320p4d+VeAv1sPD59GAG68JZXckp6PFEhAWwpqmZrkbVLAXT6Feg07AqgQggxzQWavAfD0OEWs3Dy7dB1uFzJu+ivbn+6qoZm7vlQhlpun9pX9wb1YgL9bZw1pCtg/VF6pwzdGU5pNfEyF+jxLgpXy9hseBL0Okm1Gs2x8As4FHrJft3toZdHvthMYWUDw7pHMXP8USOOGi+hNdvls3X7MAxDsRr30Z4sl2lAxuGj78OyXuYjR+ZTAAzDyHSLSlVs/lTuB54nmxdrvJvEgTCxNfRyCzS65+v1j9tLeXdlHoF+Nh6bPkzXODcBo1NiiAsPZG95HZv3WTfs0p4sl0zDMLocbtaGYUx17isMw1js3LyvsEZnMAzY9Ik8HnCuWi2a9nPS7ZA0FCr3wuIHXf7wNY0t3O0Mtdw2pS/piTrUYgb8bIKpA5MA+GqDdbNd9NDiaOzfDOU7ZQ3unuNUq9G0l4OhF3+Z9bLrB5c+/KNfbj6Y1TJrgg61mIkzBzsNfWORYiXuQxv60djsHJ33Pxv8/NVq0RwfSYNhwmx5/MnN0FTrkof9eWcp/12+lwA/wWPTh+pQi8k4sU8skcH+bCuuYWeJmkVo7ka/Io9Ga/x8wHlqdWg6xsl/gsTBcGA3LPlnpx+urqmFez5cD8DNk/rSP0kvIDIbAX42pgyUi4y+2mDNUbo29N+ibCcUb4CgSOh9imo1mo7gHwjnP+es9fIC7F3eqYd77Out7C2vY0DXSG6cpBcQmZUzB8v0RW3ovkTr6Dz9DGkMGnPSbbjMT8eAhTd1uMxu1u5yXv95N342wWPThuoFRCZmfN84QgP9WF9QacnaLvqV+Vu0xs8H6nCL6Zkw21lmdwd898hx/3pDs53ZH65zlsVNZXBylBtEajxFcIAfk/onANYcpWtDP5LKAijIhoBQ6HOqajWazhIQDBc8Dwj4+d9QsPq4fv2pxdvJLaklLSGcW0/VZXGtwBmDZLbL1xbMdtGGfiTbvpL7PpMhMFStFo1r6J4BY28EwyFrvbSzufT6/Epe/iEXIWDOxUN1WVyLMKl/AgF+guw9BzhgsU5G2tCPZPs3cp9+ulodGtcy+S/QJQX2b4Qfn2zz7k0tDv6cuRa7w+D343ozqpfuQGQVwoP8GdM7FocBy7aZsALsMdCGfjhNdYdqgPQ9TakUjYsJDIXz/i2Pv38Mijcd8+4vLtvJlqJqesaEctfp6R4QqPEkk51x9G+37FesxLVoQz+c3T9ASwN0GwERSarVaFxN7wkw6ney2fcnN4PD/pt321Zczb+XbAfg0YuGEBqoF5ZZjVMHSENftnU/zXaHYjWuQxv64bTGz9PPUKtD4z6m/gMik+XE9/IXfnXa7jCYnbmOZrvBjBN6MC4tToFIjbvpFRtGn/gwqhpayN5zQLUcl6ENvRXDgG1fy2MdbrEuwZFwjjOGvuSfchHZYbz20y5y8ipIjAzi3rMGKBCo8RStYZclFgq7aENvpXgjVBVAeKJslKCxLumny4YlLfXw6W3ywxzYW1bH499sBeD/LhhCZHCASpUaNzO5vywDoA3dirSGW/qeBjb9Z7E8Z8yRlTR3/wDZr2MYBvd8tI6GZgfnDet2sOaHxrpkpHQhItifHftr2FPmmgJuqtHO1UpruEWnK/oGYbFwprOE/6K/8cn3q/h5ZxkxYYE8cO5Atdo0HiHAz8aEdNnn2CqjdG3oALWlkL8K/AIhdaJqNRpPMfhi6HcWNFYRteRuwOCBcwcSG66bgfsKp1osjq4NHWDnEsCQfUODdAcan0EIjLMep06EMlGs5t7uGzlvWDfVqjQeZGK/BISAFbnl1Df9dhqrmdCGDrBzqdyn6dotvsZnuwV/b7oCgOtqX0TUWa/XueboxIQFMiQ5iia7gxW7zP+/14ZuGM4ROrJ+i8ZnKK9t4sFPNvK+fSJFMSfgV18OX96tWpbGw4zvK9ca/LC9VLGSzqMNff9mqCmS6YoJejLMl3jo042U1TYxNjWWhMtfAv8Q2JAJW79ULU3jQcb3lROjP2w3f10XbeiHj86FUKtF4zGWbClmQU4hwQE2Hr1oKLa4VDj1r/LkZ3dAQ6VagRqPMbJnF0ID/dhWXENRZYNqOZ1CG7oOt/gc1Q3N3PfRBgDunNqPlLgweWLMDZCcAdWFsOhvChVqPEmgv40TU2MB84/SfdvQmxtgz8/yOHWiSiUaD/LIl1soqmpgWI9orj2596ETNj84/1mwBUD267Dre2UaNZ7lZGcc/ccd5o6j+7ah5y2Xy78Th0B4gmo1Gg/wy84y3lmxlwA/wdyLh+JnOyLMljAATpktjz+5BZqssYJQc2xa4+g/bi/F4TAUq+k4vm3oB8Mtk9Tq0HiE+iY793y0DoCbJqXRL+koaw5Ouh0SB8OB3bDk/zwnUKOMPvFhdIsKpqy2iU37qlTL6TDa0EHHz32EJ77Zyp6yOvonRXDjxLSj39E/UDbDEDZY/jzkrfKcSI0ShBCHZbuYN+ziu4ZeUwJF68E/GHqeqFqNxs2s2XuA//y0C5uzP2igfxsv/eSRMO4WwICFN0FLo0d0atQxPr01jm7eiVHfNfRdy+S+1zjZGV5jWRpb7MzOXIfDgOvHpzKsR3T7fnHivRDTB0q3yrZ1GktzUp84hIBVuw7Q0GzOMgA+bOjODIbep6jVoXE7zy3Zwfb9NfSOC+NPU4+jP2hAiMx6AdlYet869wjUeAVdwgIZ2DWSJruD1SbtYuS7hr77B7lPGa9Wh8atbCys5PnvZFeiORcPJTjA7/geoNc4OGEmOFpk6MXe7AaVGm9hrDMf/Zdcc9Z18U1DryyA8lwIjICuw1Sr0biJZruD2ZnraHEYXHNiL07oHdOxBzr1AYjqCUXr4KenXStS41W0LjBarg3dROz+Ue57nQh+uqO7VZn3fS4bC6tIjg5h9hn9O/5AQeFw3jPyeNkc2L/FNQI1Xsfo3jHYBOTkVZiynK6PGrozfq7DLZZle3E1Ty/eDshQS1hQJz+4+0yCkVeDvUmGXhzme7Nr2iYqJIBB3aJothtk7SlXLee48VFDd47QU05Wq0PjFlrsDu7KXEeT3cFlo3scXNbdaU77J0R0g4Is+OU51zymxusYmypDc2YMu/ieoVfkyRWAQVE6fm5RXv1xF2vzKugaFcx9Zw9w3QMHR8G5zhj60v+D0h2ue2yN13BiH+fE6E5t6N5Pa3ZLr3GyGJPGUuwsqeGJRdsAePiiIUQGB7j2CdJPg2GXQ0uDDr1YlNEpMo6+Lr+S2sYW1XKOCx80dB1usSp2h8HszHU0tTiYNqo7k/q5qeDaGQ9DeJIs7rZynnueQ6OMiOAAhiRH0eIwyDJZPrrvGfou5wi9t54QtRqv/bSL7D0HSIwM4q9nu7H7VEgXOPcpebz471C2033PpVHCWJOGXdo0dCHEFCHEomOcn+a8z2zXSnMDB/ZA5V4ZC00crFqNxoXkltTw2NdbAXj4wiFEhbo41HIk/c6EIZfI8ssLbwKHw73Pp/EoY02aj96moRuGsfho54QQ0w67T4UQYooLtbmeg/nnJ+v4uYWwOwzu+mAtjS0OLhqZzKkDEj3zxGfOkb1o9/4CK170zHNqPMLolBj8bIL1BZXUmCiO3tmQy2gg13mcC4w88g5CiJlCiCwhRFZJieIqZnud3Yl6jVOrQ+NS/vPjLlbvrSAxMogHzhnkuScOjYFznKGXbx/SoRcLER7kz+BukdgdBmv2mieO3llDP7JsXeyRdzAMY55hGBmGYWTEx8d38uk6yd7lcq/L5VqGnSU1PP6NDLU8etFQ94dajqT/WTD0Mhl6WXCjznqxEBkpMh991W7fMfQKoIMFMjxMTQmU7QD/EOg6VLUajQtosTu4c74MtUwb1Z1J/RW1ETzz0UNZL8ufV6NB43JGp3QBIGu3eVaMdtbQV3FolJ4KHHXyVDl5K+S+ewb4eXgUp3EL837IJSevgqTIYP56jhuzWtoipMuhWi/f/gNKtqrTonEZo3rJsWpOXgXNdnNMercny2UakNE6Aeq8bRGAYRiZQGrrZOixJlCVs/cXudfhFkuwpaiKpxbJWi1zpw0lKkTxh3T66TDiSrA3wsc3gN08E2ma3yY+IojecWHUNdnZbJI+o+3Jcsk0DKOL07xbb5t62PFcwzAWG4bh3SssDsbPx6rVoek0zc5QS5PdweVjejIhXfHcTCunPwz466F4AAAd7UlEQVSR3aFwNfz0pGo1GheQ0UuGXcwSR/eNhUVNdbAvRzb97T5atRpNJ3l2yQ42FlbRvUsI953lwlotnSU46lCHo+/myJ61GlMz2jkxapY4um8YekG27DiTOBiCI1Wr0XSCtXkVPLt0B0LAY9OGEd7Zsriups8kGH0dOJrho1m6ubTJyUg5NEI3DEOxmrbxDUPX6YqWoKHZzh3zc7A7DK49qffBqnhex9SHICYV9m+E7x5RrUbTCXrHhREbFkhpTSN7yupUy2kTHzH01glRHT83M3O/2srOklrSEsL58+n9VMs5OoFhcMGLMsT309OHBhQa0yGEOGyU7v1hF+sbusMOeSvlsTZ00/LzzlL+89Mu/G2CJy8ZfvzNnj1NzzFw0u1gOODjWdBYo1qRpoMciqN7/8So9Q29eCM0VUN0T4jsplqNpgNU1jdz1/y1ANw8OY0h3aMUK2onE++R8zYHdsM396tWo+kgo1ozXUzQks76hq7j56bngYUbKKxsYFj3KG6alKZaTvvxD4KL5oFfIGS/Dlu/VK1I0wEGdYsiOMBGbkktZTXePcltfUPPXyX3PU5Qq0PTIT5dW8iCnEJCAvx48tLhBPiZ7CWbOAhO/Zs8/uQWWYJCYyoC/W0M6y4XxOfkVShWc2xM9u7oAK2GrvPPTce+ynru/1jmct9/9gBS48MVK+ogY2+ClPFQWyJN3QTpb5r/ZXhPaehr9mpDV0dtKRzYJQtyJXiwrKqm0zicNc6rGlqY1C+eK8b0VC2p49hscMELsjH5ti9l+EVjKkb0kHH0NXnePTFqbUMvyJb75JHg52ULUDTH5NUfd/HTjjJiwgKZM20oQgjVkjpHdA84+wl5/PV9ULpdrR7NcTHCOUJfm1eJ3eG937CsbegHwy0ZanVojouNhZXM/XoLAHMvHkpCRLBiRS5i6HTZtq65Dj68DlqaVCvStJPEyGCSo0OoaWxhZ4n3pqD6hqEna0M3C/VNdm57L4dmu8GVY3syZaCH2sl5irMflym0+3Lgu4dVq9EcB8N7tMbRvTfsYl1DdzigYLU81hOipuHhLzazY38NaQnh3H+Wwhrn7iI4Ci56Wa4i/fEp2PWDakWadtIadvHmTBfrGnrpNmiskuVMI7uqVqNpB99sLOKt5XsI8BM8fdlwQgK9fDVoR+k5Fib8GTDgo5lQ5/0LVjSHDN2bM12sa+gH4+ej1OrQtIt9lfXM/nAdAPecOYBB3UyyGrSjTJgNPcZAdSEsvFmnMpqAQd2i8LcJthZXU9PonQ1MfMDQdbjF27E7DG5/L4eKumYm9ovn2pNSVEtyP37+cPErMpVx6+ew6hXVijRtEBzgx8BukRgGrPPSsIt1Db01ZVEbutfz3NIdrNhVTlx4EI9PH2b+FMX2Et0TzntaHn99PxRtUKtH0yYjWidGtaF7kMZq2L8JbP7QdZhqNZpjsHJXOU8t3gbAk5cOIy48SLEiDzPoQhh5texFmvl7aKpVrUhzDEb0dC4w8tI4ujUNvXCNLFuaOBgCQlSr0RyF8tombn13DQ4DbjilD+P7eklvUE9zxqMQ319O5H9+l2o1mmPQmrqYk+edHYysaej5WXKvwy1ei8NhcMf8HIqqGhjVqwt3npauWpI6AsNg+uuyRMXadyDnHdWKNEehV2woXUIDKK1pIv9AvWo5v8Kahl7ozD9P1hku3sorP+by3dYSokICeGbGCPNVUXQ1CQPgrLny+PM7oWSbWj2a30QIcXCUvi6/UrGaX2PNd1Fhjtwnj1SrQ/ObZO8pZ+5XWwF4YvowkqN1WAyAEVcdKg3wwTXQ5P09LH2RIc5SuusKvC+Obj1DrymByjwIDIdYEzVD8BHKahq56e01tDgMrju5t/WW9ncGIeCcf0FsXzmp//mdOj/dCxmaLNdIrNcjdA+wzzk67zoMbBZdaWhS7A6D298/FDe/+8z+qiV5H0ERcMmbh+Lpa95SrUhzBK0tENcXVOLwssqL1jP01vot3Uao1aH5Fc8u2cEP20uJCQvk2ct13PyoJA6Ec56Ux1/8GYrWq9Wj+R8SI4NJjAyiuqGF3WXelWZqvXdU4Rq514buVSzbVsJT325DCHj6suF0jdJx82MyfIbMT29pgPevgnrvrfDniwxJlnH09QXeFXbRhq5xO3nlddz23hoMA247ta/v5psfL2fOhaShsuvWxzfICqIar2CoM+zibZku1jL0qn1QUyTrY3TprVqNBmhotvPHt7OpqGtmcv8Ebp3cV7Uk8xAQApe+BcHRsO0r+OFx1Yo0Tg7G0bWhu5GDo/Nhso+jRimGYfC3hRvYUFBFz5hQnrxkODabj9RpcRVdUuDiVwEBSx+G7YtVK9IAQ5yZLhsKvaslnbVcT4dbvIr/rtjL/Kx8ggNsvHjlKKJCA1RLMid9p8Ck+wADPrwWynaqVuTzxIUHkRwdQl2TnVwvaklnUUPXC4pUsyK3jL9/shGARy8aysBukYoVmZzxd0G/s6ChEt67Qhag0yjFG+Po1jF0w9AjdC+hsKKeG99eTYvD4PrxvblgRLJqSebHZoMLX4K4flCyWU+SegGH56N7C9Yx9Mp8qCuFkBhZZ1qjhIZmO7PeyqastonxfeO4+wy9eMhlBEfCZe/ISf8tn+lJUsUMTW6t6eI9JQCsY+iHj859pUGCl2EYBn/OXMf6gkp6xoTy7xkj8NeLh1xLXJrsdISApf8Hmz5RrchnaZ0Y3VhYRYvdO74tWefdpsMtyvn3kh18uraQ8CB/Xrkmg+jQQNWSrEn6aTD17/L441mwb61aPT5KVGgAvWJDaWxxsK3YOyZGrWPorS9q3aFICZ+v28e/FsmVoM/MGE56YoRqSdZm3K0w7HJZmfHdGVBdpFqRTzL44CjdO+Lo1jB0w4Ai2TFeG7rnWZ9fyZ0fyKJo9505gMn9dQVFtyMEnPsU9BgDVQXw3uXQ7H0NF6zOIGf21sbCKsVKJG0auhBimhBiihBi9lHOHxBCZAsh5rheXjupLoLaEgiO0hOiHib/QB3XvrGKhmYH00d157rxeoWux/APgkvfhqiesin6RzN15ouHGdhVGvomMxi6EGIagGEYi4EKIcSU37jbdMMwRhmGcbc7BLaL1mp0SUP1hKgHqWpo5g+vZ1FS3ciJqbH834VDEPrv71nC4+GK+RAUCZs/gW8fVK3IpxjUTYZcNu2r8opSum2N0EcDuc7jXOC3VuxECyFSXarqeClyxs+ThiiV4Us02x3c9PZqthZX0yc+jBevHEWgvzUieKYjYYCsoW7zh5+ehqzXVCvyGeIjgoiPCKKmsYW8A+o7TLX1Dow+4ufY37hPDFAuhHjptx5ACDFTCJElhMgqKSnpiMa22eeMnycNdc/ja/4HwzC496P1/LC9lNiwQF773Ql6Wb9q+kw6VEP98zth29dq9fgQ3hRHb8vQK5CGfVQMw5hnGEYFMiQz7SjnMwzDyIiPd1PZ1IMTotrQPcET32wjM1vWaHnlmgx6xoaqlqQBWT99/F1g2GH+NZCfpVqRT3DI0NVnurRl6Ks4NEpPBRYdftI5+m418TIXa2sfDZVwYDf4BUFcuhIJvsRby/fw7NId+NkEz10+khE9u6iWpDmcyX+B4VdASz28cwmU7lCtyPIM7OqMo3v7CN0wjEwgtXUy1Dk5ihCi1djnc9hkqfP+nqVog9wnDAA//bXfnXy1YR8PLJR/7/+7YDCnDtDpiV6HEHDu05A2FerK4L8XyT4BGrdhppALhmHMNQxjsWEY8w67bapzX+E8t9gwjLnuFHpUdLjFI/y4vZRb383BYcCfpqRz2Qk6PdRr8QuA6a/LqqMVe6Sp15WrVmVZesaEEh7kz/7qRkqqG5VqMX9awuEpixq3sGbvAWa+lUWT3cHvxqVw66lpqiVp2iIoHK7IlGHI/Ztk+KXJuxoaWwWbTTCgq1wZvWmf2lG6+Q1dZ7i4lW3F1fz+9VXUNdm5cEQyfztnoM41NwthsXDVAojqAfmrZB31FrUjSKvSmo+uemLU3Ibe0ihrQyMgcZBqNZYjt6SGy19eQUVdM6f2T2DutKG6hZzZiEqWph4aB7lL4YPfgb1ZtSrLMdBL4ujmNvSSLeBogdg+8iumxmXsLavj8pdXUFrTyLg+sTx3xUgCdClccxKXBlcvkM2mt34BH14H9hbVqixFawmAzYoN3V/ps3cWHW5xCwUV9cx4eTlFVQ2MTunCK9dkEBzgp1STw+EgPz+f2lrzxYEDAgJISEggMlJhG76kIXDVR/DmBbBpgawDc8ELYFP7f7UK6YkRBPgJdpXVUtvYQliQGms1t6G3ZrjoJf8uI/9AHTNeXk5BRT3De0Tzn9+NJjRQ/cuktLQUIQT9+vXDZjPPNwXDMKivr6egoABAraknj5ITpW9dCOveBwRc8Lw2dRcQ6G8jLSGCzfuq2LyvioyUY67HdBvmeWf8Fq056HqE7hLyyuu4bN5y8srrGdo9ijd+fwIRwd6R219RUUFiYqKpzBxACEFoaCjJycns379ftRzoOQau+AACwmDde87epHbVqixBaz66ykwXc707DscwoFh2lSdpsFotFqDVzPMPyJH5W38Y41X1Wex2OwEB3qPneAkJCaG52UsmI1NOgiszITAc1s+XZXd1TL3T9E+SqYtbiqqVaTCvoVcVQGMlhMZCuF6x2Bl27K9h+ou/UFBRz4ie0bz5hxOICvE+8zRzuqTXae81Dq78EAIjYEMmZP5OpzR2kgHOidGt2tA7QOvoPGGgroHeCTYUVHLpS79QVNXACSkxvHntCUR6SZhF42Z6joWrPpaNYTZ/Cu9ephcfdYJ+zhH61qJqDENNbXTzG3qiDrd0lOw95cx4eTlltU2ckh7PG9d6T8zcrKxevZrMzExWr16tWkr76DEarvlM5qnvXAJvXQT1FapVmZK48CDiwmVt9PwDatoBWsDQB6rVYVIWbyrmildWUN3QwllDknj56gxCAnW2Q2d56SXZFiA3N7eNe3oRXYfCtV9BZDLkLYfXz9YFvTqI6ji6BQxdrxA9Xt5buZeZb2XR0OzgstE9eOayEbrbkAvIzc0lOjqaadOmMW3ar1oDeDdxfaWpx6VD8QZ4dSqUbFWtynQcNHRFmS7mfBe3NELZdkBA/ADVakyDYRg8tXgb93y0HocBt53al0cuGoK/XgHaaXJzc7n7btlW1zThliOJ7gnXfg3dT4DKPPjP6bB3uWpVpqK/c2J0S7GaEbr6FSMdoXSbXPIf0wcCdbec9tDQbOeeD9exIKcQm4B/XDCYK8b0Ui2rw6Tc87lHnmf3o2e3636pqbKt7r333kt09JGdG01EaAxcvRAyr4VtX8Ib58L5z8HQS1QrMwV6hN4RijfJvQ63tIuymkaufGUFC3IKCQ304+WrM0xt5t5Ka8jF9ASGwqX/hRNmgr0JProelj4i135ojklaQjg2AbtKa2lo9vyCLXOO0IudK0R1hkubbN5Xxcy3ssgrr6drVDCvXjP6YGU4M9PekbMniYlRs9zbLfj5w1mPQWwafHUPLHtUFsO74HkIDFOtzmsJDvAjNT6cHftr2LG/hsHJUR59fpOO0HWGS3v4fN0+Lnr+54NL+RfcdJIlzNwbyc3NPRh2sRRjZsGM9+QCpE0L4NXTZA9fzVFpzUffrCDsYk5D369DLseixe5gzldbuOmd1dQ327loRDLzZ51IYmSwammWJTc3l1GjRqmW4R7ST4frv5VzVsUbYN5E2PGtalVey4DDFhh5GvMZel05VO+TxYWiU1Sr8Tr2VzVwxSsreOG7nfjZBH87ZyBPXDJMeflbq7N69WqmTJmiWob7iO8H1y+BvqdB/QH478Ww9GFd2Os36J/kzHRRYOjmi6EfXPI/AExWec/d/LyjlFvfW0NpTRNx4UE8M2M44/rEqZZlaRYvXkxubi47d+60ZsjlcEKiZfhl2VxYNkdue5fDxa9AeIJqdV5DP4WLi8zniHpB0a9oapEhliteXUFpTRNjU2P44raTtZl7gNTUVGJiYpg+fbpqKZ7B5geT7pXNMkLjYNcyeGEcbF+kWpnX0L1LCOFB/pTWNFJa49mCZ+Yboe/XNVwOJ7ekhtvfz2FdfiU2AbdMTuO2Ken46d6fHiE1NdX6I/Pfos9kuOFHmdK4+wd4exqcMAumPgQBvj1XI4Sgf1IEWXsOsLWomri0II89t4lH6L6d4eJwGLz+0y7OfuZH1uVXkhwdwvuzTuSO0/ppM9d4hsiuchHSlAfB5g8rX4KXJkB+tmplylGV6WKuEbphHKov4cNL/veU1fLnzHWs3FUOwPnDu/HQ+YO9soa5xuLY/ODkP0HqRPjweijdCq9OgXG3wsR7fXa0np4oDX17cY1Hn9dcI/TKPGiqgbB4CItVrcbjNNsdvPDdTk5/6ntW7ionLjyIF68cxdOXjdBmrlFLtxFwww8w7hb5809PwYsnwa7v1epSRN/EcAC27ffsxKi5Ruj7t8h9fH+1OhSwanc593+8nm3OT/zzh3fjwXMH0SUsULEyjcZJQAic9k8YcD4svFHWXHrjXBh6mbw9PF61Qo/ROkLfUVyDYRge61hlLkMvcRp6gu+EWwor6pnz1RYW5hQC0Cs2lH+cP5gJ6b7z5tCYjB6j5YTpz8/A94/LZtRbv4RTZsv6MP7WH4TEhQcRExZIeW0TRVUNdI0K8cjzmivkUuI7I/TaxhaeWryNyU98x8KcQgL9bdw6OY2vb5+gzVzj/fgHwYQ/w42/QNoU2f/3m/vh+bGw5QufKPTVN8EZdvFgHN1cI/T9m+XewiP0phYH767cy7+XbKe0pgmAs4d05Z4z+9MjRpcK1piMmFS4IlPmqX99n+xj8N4M6DEGTn0AUk5SrdBtpCdGsGJXOduLqznFQ4Mw8xi6w3FYhov1RuhNLQ4+Wp3Ps0t3HOxHOKxHNPed2Z8xqb43AayxEEJA+mnQZxKsegW+fwzyVsDrZ0GfU+GUu6HnGNUqXU5668SoB5tdmMfQK/OguRbCEmQRfotQ32RnflYeLy3bSWFlAyC/qt11ej9OG5josckUjcbt+AXA2D/CiCvhl+fg52dh57dy6z0Bxt8l9xZ5zaclyIlRHXL5LQ5OiFpjdF5U2cCbv+zmnZV7qahrBuQn+k2T0jhnaDe9OMhkzJs3j9TUVHJzc6moqGD27NmqJXkvQREw8R4YfT2seAFWvCTTG3d9D0lDYOyNMPhiGYc3Ma0j9B37PZfpYh5Db42fm3hBkcNh8EtuGe+s3MvXG4pocciJoWE9ovnjKX04bWAiNm3k7eNBDzUOeLCyzbtkZmYCMGXKlIPGrmkHYbEw+S9w4s2w6mVp7EXrYcEfYdEDciQ/8mqI6a1aaYeIDQ8iNiyQstomCisbSI52f6aLeQzdxCP0vPI6FuYUkJmdz+6yOgBsAs4aksQfTu7NyJ5ddGjFxNx9991kZ8vl7tnZ2QebRWvaSUi0zIg58RbY8CEsf17WXf/xX3JLnQTDZkD/syEoXLXa46JvYjhlueVsK67Whv4/mGyEXlhRzzcbi/hs3T6y9hw4eHvXqGAuHd2DS0f38FhuqiVpx8jZk7T2ErVs5yJPEBAMI66A4ZfLSdOs12Djx5C7VG4BodLUB54vJ1NN0CA+PTGC5bky02VSP/eXGDaHoTscctUZeO0I3eEw2FBYybKtJSzesp+1eRUHzwUH2Dh9UBIXjEhmQt94HR+3GK0GXlFR0cY9Ne1CCOg5Vm5nPCJNfd18yFsO6z+Qm38IpJ0quyn1ORWiklWr/k36erimizkMvXIvNNdBeBKEdFGtBgDDMNixv4YVu8pZsaucn3eUUlbbdPB8cICNiekJnDE4iakDEwkLMsefWnP8TJ06lcWLF7No0SJGjhypWo61CI2B0X+QW/kuae5bPoOCbLnf8pm8X/wAmSGTchL0OgnCvKMXQHrr4qL92tAPcbCGSz8lT28YBvkH6tlSVM36gkrW5lWwNr/iYHZKK8nRIUxIj2div3gm9I0nJFC3ffMFWjNaVq9erQ3dncT0hvF3yK0yX5YT2LkEcpdByWa5rXzJed9USB4lt6QhkDBQSbpz34M1Xao9kunSpqELIaYBFcBIwzDmHu95l1Di/hWiDodBaU0jBRX1FFTUs7u0ltzSWnaV1rK9uIaaxpZf/U5CRBBjUmMZ0zuGsamx9IkP05ObPkZmZiZTpkwhOjqaVatW6XRFTxHVHU64Xm4tTZC/Enb/BHt+hLxVUJ4rt/UfHPqdyGSIS4fYNLl1SYHoHhDVA4Ij3SIzJiyQuPBASmuaKKiop3sX98b9j2noTrPGMIzFQohUIcQUwzAWt/e8q2gs3EQQUB2ZRmNNI4YBBgYY4DDAbhg4HAZ2h0GLw0FTi0GT3UFDs/3gVtNop7axhZrGFirqmjhQ10xFXRMlNU2UVDVQUtNIs/3o9SXiwoPonxTBwG6RDO8RzbAe0XSLCtYG7uOsWrWK6OhocnNzmTVrlmo5vol/IKScLDfuBnuzTKIoyJZb8Ub5c1WB3HKX/voxAiMgIhHCE2W4JiRGhndDomXefGAEBIbJiVv/ELn3C5SbzV/WhRc2EH7OhVHi4H5UrJ2smkpy84vp3sW9KZhtjdBHA+87j3OBkcDi4zjvEvZsySYd+N1n1WR/6vKHP0iX0ACSu4TQLSqEXrGh9I4Lp3dcGGkJ4cRHmHuRg8Y9zJkzR7UEzZH4BUDXoXLL+L28zWGXMfiyHc5tO1TshYo8Gb5pqoayannOxbwEEAzZWdfBkCdc/viH05ahRx/x85FFRdo6jxBiJjAToGfPnsclDgDDwLD50+TwpzQklVgR6HxcAIFNgJ9NYBMCP5sgwE8Q4GcjwM9GcICN4AA/gvz9iAj2JzzIn7Agf6JDA+gSGkBUSCDxEUEkRAQRHxFEcICOeWs0lsTmB3FpcjsSw4CGCqjZD9VFUFcKdeVQXyFvb6yWW1MttNRDcwO0NICjBexNcnM4wHCAYXdWkjQOVpRsaLFT12SnUbi/e1Nbhl4BHGsmoa3zGIYxD5gHkJGRcfw1M4Wg319Wgr2FZX7mmMPVuAdPNgpwNYYPlIs1LUI4wytd3JJ44W930MUmGOeB125b9dBXcWgUngosOs7zrkObuU/j5+dHc3Nz23f0Uurr6wkI0G0CfRF/P5vHBiLHNHTDMDKBVCHEFOfPiwGEEIuOdV6jcTXR0dEUFxfjcDhUSzkuDMOgrq6OgoICEhLcv1JQ49sIT34VzMjIMLKysjz2fBrr4HA4yM/Pp7a2VrWU4yYgIICEhAQiI92TGqexPkKIbMMwMtq6n45jaEyBzWbr2KS6RuNDmKunqEaj0WiOijZ0jUajsQja0DUajcYiaEPXaDQai+DRLBchRAmwp4O/HgeUulCOGdDX7Bvoa/YNOnPNvQzDiG/rTh419M4ghMhqT9qOldDX7Bvoa/YNPHHNOuSi0Wg0FkEbukaj0VgEMxn6PNUCFKCv2TfQ1+wbuP2aTRND12g0Gs2xMdMIXaPRaDTHQBu6RqPRWASvNHQhxDQhxBQhxG923G3rvBk51jUJIaKd56cJISzT86y9/0erXHM7XtcjW//PntbmLo7jvTzT09rchfN6jtobwp3+5XWGfnjjaaCitdZ6e8+bkXZc0yVAjLP+PFZ48bf3/+i8PdWT2txBO6931mE9Bix/zc6fc53nc4UQIxXIdDnH6gvhbv/yOkNHNp7OdR63Np4+nvNm5JjXZBjGPGcrP5DmZoVGIm3+H52mlnvk7SblmNfr/JDOFkKkGoYx1zAMK1x3W//jLOADp5GnGoax2pPiFOFW//JGQ+90Y2oT0q5rchpcuUXe7O255lSLXCu0fb19nFu5EOIlIcSR9zcjx7xmwzAqgJeAD5DX7gu41b+80dA73ZjahLT3mqYZhjHL3WI8xDGvWQgxxWItDdvzP97pNLlswPRhNdr+H08DFhuG0eewn62OW/3LGw3dexpTe442r0kIMc0wjLnOY9PPG9D2NZc7J46mIWPKZg+tted13Uo08o1vdtq65sPDLI9gvYHab+FW//I6Q/fFxtRtXbPz9jlCiGwhRLY6pa6jHf/n1c7bYvj111TT0c7XdfRh502/krKtawbmCSFmOs9fYoVrhoPfNDIO/8bhKf/SK0U1Go3GInjdCF2j0Wg0HUMbukaj0VgEbegajUZjEbShazQajUXQhq7RaDQWQRu6RqPRWARt6BqNRmMRtKFrNBqNRfh/mtA2in2yEEkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4U1X6wPHvTfe9lLaUFkpp2XdKyyLiWlBERBFwxV386ajjis6MjjquMOqoo47CuOMoggu4axEUZS1lXwul0Ba60H1vmtzfHycpFYFuSW7uzfk8T57cNGnyBtq3J+895z2KqqpIkiRJ+mfSOgBJkiTJMWRClyRJMgiZ0CVJkgxCJnRJkiSDkAldkiTJIGRClyRJMgiZ0CVJkgxCJnRJkiSDkAldkiTJIGRClyRJMghvV75YZGSkmpCQ4MqXlCRJ0r1NmzYdU1U1qrXHuTShJyQkkJGR4cqXlCRJ0j1FUQ615XGy5CJJkmQQMqFLkiQZhEzokiRJBiETuiRJkkG49KSoJEmSs5jNZvLy8qivr9c6lHbz8vIiPDycyMhITKaOj7NlQpckyRDy8vIICQkhISEBRVG0DqfNVFXFbDZTWFhIXl4e8fHxHX4umdCNoOYYFO6Awp1QUwzmOnHxCYCQGAjpDhGJ0H04ePtpHa2kM6U1jWzNK+doeT2FlfUUVzegAAE+XgT4etGzSyADuofQr1sI/j5emsVZX1+vu2QOoCgKvr6+xMXFsXfv3k49l0zoeqSqkL8Jdn4Ou5dD+eG2fZ+XH8QlQ8KZMORyiB7o3DglXTJbrPyadYzvdxawIaeU7OKaNn2fSYGR8V2YMrQ7Fw3tTkyYv5Mj/SO9JfOWOlNqsZMJXU+aGmHLh/DbS1CWc/zrPkHQbTDEDIHQODEy9/aHpnqoPAJVR6FoNxTtgsNrxeWXf0LMUBh+FYycDf6hmr0tyT3sL6rig7WH+GrbUUpqGpu/7u9jYliPcBK6BtIt1J+oEPEpr95soabBQvaxGnYfrSS7uJpNh8rYdKiMf3y1i7P6RXH3eX1ISYjQ6i15HJnQ9cBqgU3vwuoXoTJPfC2kOwy6FAZfCj1GQ1v+uteWQu4G2Ps17FwGBdvFZdU8GH0LjLkdgltdXSwZzNbccl5ftZ/vdxY2fy0pKohpI+KY0DeSwbFh+Hq3/vNV3dDET3uK+GbbUVbuLeKXfcX8sq+Y8X26ct/E/ozq1cWZb0M3FixYAEBERAQzZsxw6HMrqqo69AlPJyUlRZVL/9upeC98cQfk2/7dogbC2Q+KZG7qRL2yqQH2fQ/r34RDv4qv+QTC+Htg/N1ilC8Z2qGSGp76ejc/7hKJ3NfbxIxRPbh6dDyDY0M7Vb4or23k7V8P8s5vOVQ1NKEocP24BOZe2J9AX+eMI3fv3s3Age5fRpw5cybz5s0jIiKC8PDw3913qvegKMomVVVTWntuOUJ3V1YLrPk3rHwGLA0QEgsXPG1L5A5YPuDtB4MuEZfcDbD6Bdj3Hax6BjYvgklPwqBpoOOapHRyNQ1NvLpyP2+tPkijxUqQrxfXjuvFzWf2JjrEMXXv8EBf7pvUn5vPTOSNXw6w4Jds3l2Tw8q9RfxzxnBG9/bMMkxmZiapqakkJiY65fnlCN0dNVTDZ7fC3m/E7ZHXwgXPgH+Yc18351f49mEo3C5u958CU1+WZRgDWZddwgNLtpJXVgfA5ck9eOjC/kSHOvcE5o78Ch5YspU9BVV4mRQev2Qws8f2cuhrnDi6TXj4a4c+/6nkPDelTY/Lzs7moYceIjU1lbS0NJKTk//wGKeP0BVFmWM7TFJV9aGT3D8DKAeSVVWd39rzSa2oyIP/XSmSqn84TF8I/Sa55rUTzoTbfhb1+vTHRa09dz1MfQkGTnVNDJJT1JstPP/9Xt767SCqCoNjQ3nq0iGMjHdNXXtIXBjL7zyTF37cy5s/Z/PoFzs4UFTNI1MG4u3lGQvW7aPyOXPm/KHU4iinTeiKoqQB6aqqZiuKskRRlDRVVdNb3J8MoKpquqIoiYqiJKuqmumUSD1BwXZYdDlUF0LXPnD1J9A1ybUxmLwg9WboOwmW/QkO/gyLr4WUm+HCZ+U8dh3KOVbD/y3a1Dw6/tN5fbjrvD74uDiR+nqb+MvkgfTvFsLDn27n3TU55JTU8Ma1o5wyf72tI2dXys7Odloyh9Z7uSQCafZYbLdbugIxOrffn4bUMYW74P1pIpknTICbf3R9Mm8pvCfM/gImzxfz1zPegncmi08Qkm6k7ypk6qu/sqegit6RQXx2+xncN7Gfy5N5S9OTe/DhrWOICPJl1d5ibvtgEw1NFs3icZXy8nKn1c7tTvu/qqrqAlVVF9huJgMnFsDDgdIWt7s6MDbPUbxPJPPaEjEyvvZTCHSDk0YmE4y5DW76DsJ6isVMb54FOb9pHZnUClVVefHHfdzyfgZV9U1cMLgby+8cz/CezhsdtkdqQgSL54yla5AvP+8r5k8fZtLYZNU6LKdKT09n4sSJTn2NNv2ZtpVWMmU5xQlKD8J7U6GmCBLPgVkfuF9ZIy4Z5vwMSeeJPzofXArblmgdlXQKDU0W7lm8hVdWZGFS4OHJA3jj2lGE+PtoHdrv9O0WwqJbxhAe6EP67iLu/mgzFqvrJmm4UnZ2Nhs3bmTWrFlOfZ22fu5KO9kJUUS5xT6UDAdKTnyAoihzFEXJUBQlo7i4uINhGlR9JfzvCqgugF5nwpUfgY/rl0u3SVBXuGYpjPk/sDTCZ7fAL8+LNgSS26ioNXPdWxtYtuUIgb5evHVDKv93dpLbLokf2D2URTePIcTfm+92FjDvuz1ah+RwmZmZLF26lNTUVKfWz6ENCV1RlDn22Su2k6QoimKPajHH6+qJQPqJ328r26SoqpoSFSWnvzWzWsTUxGN7IWoAXPUR+AZqHdXpmbxg8jy44FlAgZ+ehK/vB6uxPyrrRWFlPTPeWMP6g6V0C/Xjk9vGcW7/aK3DatWQuDAWXpeCt0lhwS/ZfJZprPM0ycnJzJ071+GrQk/mtAndlsDnKYpyQFGUshZ3rQCwl2BsjyuXJZl2+OkpsZDHP1wkcz31Uhl3B1zxwfGTpV/cDpYmraPyaLmltcx8Yy1ZRdX06xbM53eMZ0ick9ctONDYxK48dslgAB7+bDtbcstb+Q7pZFo7KZquqmoXVVWTbNfptq+PavGYBbbHLTj1M0m/s/Nz+PVFULxg5ruita3eDJwK1ywRjcG2fQxLbxTNwySXO1Bczaw313K4tJahcWEsnjOO2HD9tW6YPbYXV4+Jp7HJypz3MyiuatA6JN3xjBn97qQ8F5b/WRxPegqSztU2ns5IPBtmfw5+YaKN7yfXyaTuYgeKq7nizXUcragnNaELH946hi5BvlqH1WGPTx3M6IQIiqoaeOjTbbhyJbsRyITuSlarKE80VEC/C2Hs7VpH1HnxY+D65RDQBfZ9C5/eLMsvLpJzrIarF67jWHUDZyR15b2bRhPqZjNZ2svX28TLV40g1N+bn/YU8eH6Nvb6lwCZ0F1r3WuQsxqCouCSV43T+Cp2xO9H6p/fJk76Sk6TV1bLNf9dT2FlA6N7R/DW9alO62Loat3DAnj6sqEAPPX1Lg4UV2sckX7IhO4qBTtgxT/E8SWvGq/hVexIsSDKNxh2LIUv75ZTGp2kqLKeqxeuJ7+8juT4cN6+IZUAX+22fnOGqcNjuXRELPVmK/cu3oLZImdStYVM6K5gtYi+KJZGGHUj9L9Q64ico2eqmKvuHSBa8K54QuuIDKey3sz172zkcGktw3qE8e5Nown2M8bI/ERPTBtCXHgA2/Iq+O/qg1qHowsyobtCxttwdIvYHm7SU1pH41y9xsGs98UMnl//BWtf1zoiw6g3W7j1vQx2H60kMTKId25I1X3N/HTCAnx4droovbyyIou8slqNI3J/xvzT7k6qCmHFk+J48jzwC9Y2HlfoNwkufV3U0r//izhnMGym1lHpmsWqcs/HW5oXDb1/82i6BrtZiwgnOKtfFFOGdefrbUf5x5e7WHBdqy3Bj3vcRfPwH69wzeu0gRyhO9sPj4hZLX0nwYCLtY7GdYZfefzTyBe3y4ZenfT017v5bmcBof7evH/TGHp0cfNVxQ706JRBBPl68cOuQlbsLmz9G9zUggULSE9P56GHHmL+fOdsHSFH6M508BfY/gl4+4s2tEaZ1dJWZ9wFFfmw/j/w8dVwywqI7KN1VLrz/toc3v7tID5eCguuS6F/TIjWIblUTJg/907sx1Nf7+ax5Ts5IymybSeB3Wjk/NBDDzFx4kTS0tLIzMw86W5FjiBH6M5itYjt3AAm3A8RvbWNRysXPA39JkN9OfxvJtT8oX+bdBor9xTx+PKdADw3fRhjEz2zQ/UNZyQwICaEvLI6Fq7O1jqcdluwYAFpaWK7iI0bNzYfO5pM6M6y7RMo2in6iJ9xt9bRaMfkBZf/F2KGQWk2LL5GriZtoz0Fldz5v0ysKtx9fl8uH9VD65A04+1l4rGpotfLgl+yKanWV1sAZ29sYScTujOY62Hl0+L43L+5b0tcV/ELFtvphcTC4bXwzQNyjnorSmsaueW9DGoaLVwyPJZ70/pqHZLmxiV15Zz+UVQ3NPHqyv1ah9MuV1xxBZmZmcyfP5/U1FSnvY5M6M6w8b9QkQvRg2GYcxva60Zod7jyQ3E+IfM98W8knZTZYuWODzeRV1bHsB5hzJ8xzG37mbva3AsGoCiwaN0hckv1MY2xvLycuXPnkpycTElJiVPb6MqE7mj1FbD6eXGc9pgoOUhCXLJYJQvw7UPipLH0B09+tYt12aVEhfixYHaKUzZQ1qtBsaFcOiIOs0XlhR/2ah1Omzz77LOkp6c3b3LhzPKLnOXiaL+9DHVl0Gu8mKoo/d6wmVC4A357CT65Hm77GcLjtY7KbXyyMZf31x7C18vEm7NHERPm4eW6k7hvYj++3naUZVuPcOtZiQyOde++7/PmzXPZa8kRuiPVlsK6N8Rx2uOeN02xrc7/O/SZCHWlouWuuV7riNzC9rwKHlm2A4CnLhtCcnwXjSNyTz0jArlmbDyqCv9eoa9aurPJhO5I698Ec43YTLnnaK2jcV8mL5i+AMJ7wZHN8O2DWkekubKaRv5v0SYam6xcPSaeWSk9tQ7Jrd1+dhK+3ia+21lAVmFV89f13D/dEbHLhO4oDVWw3jY6n/CAtrHoQWCE2MbO2x8y34dN72kdkWYsVpW7P95Mfnkdw3uG89jUQVqH5PaiQ/2ZlSKmcf5n1QEAvLy8MJvNWobVKXV1dfj4dK43j0zojpLxtlg803Ms9DpD62j0oftwuPhf4vibB+DoVm3j0cjLK7JYnXWMrkG+/OeaZPy85UnQtrjtrCS8TArLth7hcEkt4eHhFBYWYtXZpuWqqlJbW0t+fj7R0Z3b1FueFHUEcx2ssc3eOOsBWTtvjxFXQ+4G2PTO8ZOk/u59ksuRVmcV8++fslAUeOWqkbrcC1QrPSMCmTYils8y83njlwM8NW0weXl57N2rj9kvLfn4+NCtWzdCQzu3WbxM6I6weRHUFInVkH2cs6TX0C58DvIzoGA7LL8LZr7nEX8UCyvruefjLagq3JPWl/F9IrUOSXfuOCeJzzfnszQjjz+f35f4eM+eMSVLLp1ltcCaV8TxhPs9IhE5nI+/SOK+IbBrGWxYqHVETtdksXLXR5spqWnkzD6R3HWeXAnaEX2iQ7hwcAyNFitv/yo3wZAJvbP2fgvlh6FLAgycqnU0+tU1Cab9Wxx//1c4skXbeJzs5RVZbDgoFg/964oReJnkQKCjbjs7CYCPNhymttGzNyiXCb2z7DNbRt8mV4V21uDLIPUWsJph6U1i5pABrTlwjFdX7hd18ytHEhVi/I0qnGlEz3BG9Aynsr6JLzYf0TocTcmE3hmFOyFnNfgEwchrtI7GGCY9JXrglB6Ab4w3P72kuoF7F4u6+V3n9mFckme2w3W0G8cnAPDumoO6noveWTKhd8b6N8X1iKs9amaGU/kEwMx3wCcQtn4EWz/WOiKHUVWVB5duo7CygdSELtx9vqybO8rkId2JCvFjX2E1aw94bs99mdA7qrZU9DwHGHObtrEYTVR/sf8qwFf3QckBbeNxkHd+y+GnPUWEBfjw8pUj8faSv36O4utt4toxvQB4Z02OtsFoSP5EdVTm+9BUJ6YpRsqRlsONnA2Dp4tWCp/dChb9rgAE2H20kue+3QPAvMuHyfnmTnD1mHh8vUyk7y7UTWtdR5MJvSOsluP9vMf8n7axGJWiiFWkYT0hfxP87LqOdY5Wb7Zwz8dbaLRYuWp0PBcOidE6JEOKCvHj4uHdUVX4YN0hrcPRhEzoHXFgpdjAoksCJJ2vdTTGFRAOl70JKLD6BTi0RuuIOuS5b/ewt7CKxMggHr14oNbhGNp14xIAWLopj8YmfbUAcASZ0Dti8/vieuS1YJL/hE6VMB4m3AeqFT6bA3XlWkfULqv2FvHumhy8TQovXzmSQF+5ONuZhvcIo3+3EEprGlmxu1DrcFxOZqP2qjkGe74BxQQj5FRFlzjnLxA7Unwq+vYhraNps9KaRh5cug2A+yb1Y2gPORPK2RRF4YpU0Xp4cUauxtG4nkzo7bX1Y7Hwpc9ECI3VOhrP4OUD0xeCdwBs+xh2fq51RK1SVZW/frad4qoGRidEcNtZSVqH5DEuGxmHr5eJn/cVc6S8TutwXEom9PZQVdj8gThOnq1tLJ4msi9MelIcf3kPVLr3isBPM/P5bmcBwX7evDBruFza70JdgnyZOLgbqipq6Z5EJvT2yMuA4j0QFAX9LtQ6Gs+Teos4CV1fDsv+JP7AuqHc0loeX74TgMemDqJnRKDGEXmeK21ll08ycrFa3fPnxBlkQm+PTNuuOsOvEmUAybUUBaa9BgFd4MBPx6eOuhGrVeWBJVupbmjigsHdmDGqh9YheaTxSZHEhQeQV1bHGg9aOSoTels11hyv3SZfp20sniy0+/Fdjn78u9utIn1nTQ7rD5YSGezLM5cNRZHtlDVhMinN+7J+4kEnR9uU0BVFST7NffNs13McFZRb2vstNFZDj1S5MlRrgy+DITPAXAtf3CEWermB/UXVzP9OrAZ9dvowugbLLopamp4cB8APuwqoafCMtrqtJnRFUdKAJad5yBxFUQ4A2Q6Lyh1tt/0TDJ2lbRyScNE/ITgGctfB2le1joYmi5X7P9lCQ5OVGaN6MHFQN61D8ng9IwJJ6dWFerOVH3d5xpz0VhO6qqrpnD5Z36qqapLtccZUWwr700HxEqNDSXuBEXCJbUOMn56Cwl2ahvOfVQfYmldBbJg/f586SNNYpOOmjRBTi5dtydc4EtdwRA09UVGUNEVR5jrgudzTzs/B2gRJ50JwlNbRSHb9JkHy9WBphC9u16yB164jlbzyUxYA82cMJ9RfnjB3F1OGxeJtUvgl6xgl1Q1ah+N0nU7oqqrOt43Ou9rKM8azfam4HjpT2zikP7rgaQiLh6Nb4NeXXP7yjU1WHliyFbNFZfbYXpzZV2707E4ignyZ0DcSi1Xlm+1HtQ7H6TqV0BVFmaMoygzbzRIg8RSPyVAUJaO4uLgzL6eN8lw4vEasUhwwRetopBP5hRzfi/TneVCw3aUv/9rK/ew6WknPiAAenjzApa8ttc20EeLk6LIt7r0YzRE6lNAVRQm3HWYA9tp5ku3276iqukBV1RRVVVOionRYrthhG533nyySh+R+Es85vhfpF7dDU6NLXnZHfgWvrdwPwD9nDCfITzbeckcTB3UjwMeLjENlhu+T3pZZLjOAlBYjcYAVAKqqZgKzbPcdsN02Fllu0Ye0JyC8lxihr37B6S9nL7U0WVVuOCOBsYlyb1B3FeTn3TzraPlWY4/S2zLLZamqql1UVV3a4mujWhwvsD1mvrOC1EzxXijcIfYL7SP7nrs1v2C49HVxvPp5p5deXl25nz0FVfTqGsjcC/s79bWkzrPPdvnS0xO6R9u9XFwPuBi85SIRt5dwJqTeKmYkOXHWy84jFbxuK7XMv3yY7HGuA2f2jSTEz5s9BVXkHKvROhynkQn9dHbZEvrAS7SNQ2q7tMchPF6M0J0w68VssfLAkm3NpZYxstSiC37eXpw/MBqA73YWaByN88iEfiplOVCwDXyDxUk3SR/8guES28rRn+dB4U6HPv3rKw+w2zarRZZa9MW+l+t3O2RC9zy7vxTX/S4AH39tY5HaJ/FsSLnJNuvlDrA4po/HnoJKXl0pFhDNk6UW3Tm7XzT+Pia25JZztMKYG1/IhH4q9oQ+cKq2cUgdM/EfENZTLDha++9OP12TxcqDS7ZhtqhcOzaeM5LkAiK9CfD14px+ouzyvUFH6TKhn0zlUchdD97+Yqs5SX/8QmCqrYa+8lko3tepp1u4+iDb8yuICw/g4ckDHRCgpIXJQ0XZ5VuZ0D3Inq/EddL5oiYr6VOfNBh5LVgaxA5HHWyzu7+omn+liz8Iz04fSrBcQKRb5w6IxsdLYWNOKccM2NtFJvSTsU9XHCRnt+jepKdFm928DbD+jXZ/u8WqMnfpVhqbrMxK6cFZ/XS42llqFurvw5l9IrGqGLKlrkzoJ6othZzfwOQtTohK+hYQfrz0suJJKG1f2/531+SQebic6BA//jZFtsU1AvtsFyOWXWRCP1HWD6BaIGGC2LtS0r/+k8UOR011sPzuNm8ufbiklue/3wvA05cNJSxAtsU1gomDYlAUWHeghGqD7WQkE/qJ9n0nrvtP1jYOybEmz4PArpCzGja92+rDVVXl4c+2UWe2MHV4rNyByEAignxJju9Co8XKr1nHtA7HoWRCb8lihv0/ieO+k7SNRXKsoEiYbGs39MOjUHH6HWw+3pjLmgMlRAT58rjcgchwzhsgpi+u3FOkcSSOJRN6S4fXQUMFRPaHiN5aRyM52pDLof9F0FgFX917ytJLQUU9z3y9G4DHpg6Smz0bkD2h/7S3CKu1bSU4PZAJvSV7uUWeDDUmRYEpL4JfGGR9f7w1cguqqvK3z7dT1dBE2sBoLhkeq0GgkrMNiAkhNsyf4qoGdhyp0Doch5EJvaV934trmdCNK7Q7XPCUOP52LlT/fhet5VuPsGJPESF+3jx16VAURdEgSMnZFEXhXNsofcVu45RdZEK3KzkAJVmi93nPMVpHIznTyNnQ+2yoK4XvHmr+ckl1A098uQuAv04ZSEyY7OFjZPbuiyv3yoRuPFk/iOs+aeAlp6cZmqLA1JfBJxB2fAp7vgHgiS93UVrTyLjErlyZ2lPjICVnOyMpEn8fE9vyKiiqrNc6HIeQCd2uuX5+obZxSK4R0RvOe1Qcf3Uvq7ZksXzrEfx9TDx3uSy1eAJ/Hy/G25qsGWWULhM6QH2lWB2qmMQIXfIMY26DHqlQXUDF8ocBeGBSf3p1DdI4MMlVjFZHlwkd4ODPond2j1QIjNA6GslVTF5wyas0KT5Ms6ZzXbccbhwvp6t6Evv0xV/3H6OxyapxNJ0nEzrAgZXiWo7OPc6aqkhearwUgEfUN/FqqtU4IsmVYsMD6BsdTG2jhc2Hy7QOp9NkQgc4YFsdmnSetnFILlXXaOEvn23nTctUigP74lt5CH56WuuwJBeb0Fd00FxtgDYAMqGXZkPZQTFdMXak1tFILvTij3s5VFJLYrcuhF/5pjiHsu51yN2odWiSC03oJ06Mrs4qbuWR7k8mdHu5JfEcUVOVPMKW3HLe+vUgJgXmzxiGT/woOOMuQIXld0KT8TY/kE5uTO8IfL1MbMuvoKymUetwOkUm9Gx7Qj9X2zgkl2lssjJ36VasKtw6IZHhPcPFHef8BSKSoHgPrH5B2yAllwn09WZUry6oKqw5UKJ1OJ3i2Qnd0gTZv4jjJJnQPcVrK/ezr7CahK6B3JPW7/gdPgFwiW1D6dUvQMEObQKUXM4oZRfPTuhHMkV3xYgk6JKgdTSSC+wpqOT1VfsBmHf5MAJ8TyizJYyH1FvA2iT2IbUYawME6eTOanFiVG3jBijuyLMTupzd4lGaLFbmLt2G2aJyzZh4xiR2PfkD0x6H0B5wdAuse82VIUoaGdQ9lIggX/LL68g+VqN1OB0mEzrIhO4h3v7tINvyKogN8+fhyQNO/UC/ENHrBWDlM3Bsv2sClDRjMimc2cdWdtmn37KL5yb0+grIyxCbQSecqXU0kpMdPFbDCz/sA+Dp6UMJ8W+lAVvfNBh+FTTVw/K7wKr/VYTS6U3oKxL6r/v1Ox/dcxN6zq9iM+geqeAfqnU0khNZrSoPfbqNhiYr00fGcW7/6LZ94wXPQFA0HF4DGW85N0hJc/YFRmsPlGC26PMPuOcm9IO22S29z9Y2DsnpPtxwmA0HS4kM9uXRi9uxP2hgBEx5XhynPw7lh50Sn+QeYsL8SYwKoqbRwrY8fe5i5LkJPedXcd17grZxSE6VV1bLc9+I/UH/MW0IXYJ82/cEg6aJS2M1LL/7lPuQSsYwznaifF22Pueje2ZCrymBwh3g5QdxKVpHIzmJqqr85bPt1DRauGhoDBcN7d6xJ7roeQjoIhahbV7k2CAltzJWJnQdOmQbnfccDT5ymzGjWpKRx+qsY4QH+vDEJUM6/kTB0TB5vjj+/m9QecQxAUpux57QM3LKdNlO1zMTenO55Sxt45CcpqCinie/FvuDPj51MFEhfp17wqEzxW5WDRXw1b2y9GJQUSF+9I0Ops5sYVteudbhtJtnJvSDq8W1nK5oSKqq8tfPt1NV38T5A6KZNiK280+qKHDxv8AvTGxXuH1J559Tckv2UfpaHfZ18byEXl0MxbvBOwDiRmkdjeQEn2/O56c9RYT4e/P0ZQ7cHzQ0Fi6w9Uv/5kGoKnTM80puZVySLaHrsI7epoSuKEryae6boShKmqIocx0XlhO1rJ97d/JjuOR2iirreeJLUWp59OJBxIQ5+BzJyGsh6XyoL4ev75OlFwMa01tsQ7npUBkNTRaNo2mfVhO6oihpwEk/X9oTvaqq6UD56RK/27CXW+R0RcNRVZVHvthBRZ2Zs/tFMXNUD8e/iKKItgC+IbDnK9j5meNfQ9JU12A/+ncLoaHJypbD+qr21KSJAAAeqUlEQVSjt5rQbck6+xR3XwHY33E24P6bctpPiCbIhG40X247yg+7Cgn28+bZ6Q4stZwovCdMelIcf/OgKONJhjI2UYzS12WXahxJ+3S2hh4OtHzHp2hf5yaqCuHYXvAJhFj3/zAhtV1RVT1/Xyb6l/9tykBiwwOc+4KjbhC7XNWWyNKLAR2vo+urr4tnnRS118/jx4J3O1cMSm5LVVUe+XwH5bVmJvSN5MrUns5/UUURm2H4BsPu5bL0YjBjeouEnnm4nHqzfuronU3o5UCE7Tgc+MNpYUVR5iiKkqEoSkZxscYfTQ+tFde9ztA2Dsmhlm89wg+7Cgnx82be5cOcV2o5UXg8THpKHH/9AFQXueZ1JafrEuTLgJgQGpusbM/XT1+XDiV0RVFsmzCyGEi0HScC6Sc+VlXVBaqqpqiqmhIVFdWxKB3l8DpxHS8TulEUVdbz92U7AXjkYheUWk406gaxH21dqVxwZDApCV0A2Jijnzp6W2a5zABSbNd2KwBUVc20PSYNKLffdkv1FaJ/i8kH4mT93AjEAqLjs1pmpbig1HKi5tKLbdbL9qWuj0FyitQEUXzIyCnTOJK2a8ssl6WqqnZRVXVpi6+NanG8QFXVdFVVFzgrSIfI3QioEDtCbAYs6d6nmfmk7y4kxN+b5y534qyW1oT3bLHg6AGoPKpNHJJDjeolRugZOaVYrfr45OU5J0UP2+rn8WO1jUNyiCPldTzxpSi1PD51MN3DNP4jnXwd9JkoFhx9+WdZejGAuPAAuof5U1nfRFZRtdbhtIkHJXR7/XyctnFInaaqYgeiqvom0gZ2Y3pynNYhHS+9+IdB1veyza4BKIpCiq3sopc6umck9KZGyM8Qxz3HaBuL1Gn/23C4uS3uM9OHaFdqOVFod5j8T3H83V+gPFfbeKROS004XnbRA89I6AXbxGa/kf0gKFLraKROOFRSw9Nfix2Inpw2hOgQN+tnP2wWDLgYGqtg2R1yc2mdS+llOzF6SB8nRj0jocv6uSFYrCr3f7KV2kYLU4fHMnW4A9riOpqiwMUvQWCk2Ld2g3vPFZBOr39MCCF+3uSV1XG0ok7rcFrlIQld1s+NYOHqbDIOlREd4seT0wZrHc6pBUfBJa+I4/THoHiftvFIHeZlUkhunu3i/qN04yd0VZUjdAPYfbSSF38QiXHejGGEB7p564YBU2D41aLU9/kcsJi1jkjqID3V0Y2f0Ev2iwZKwd2gS2+to5E6oKHJwr2Lt9BosXL1mHjO7R+tdUhtM/k5CO0BRzbDL89rHY3UQcdnusgRuvZajs7dZTaE1C4v/rCPPQVV9OoayN8uGqh1OG3nHwaX/Ucc//JPyMvQNh6pQ4b3CMfHS2F3QSWV9e79Scv4CT13g7iW0xV1aV12CQtWZ2NS4MVZIwjy89Y6pPbpfRaMuxNUC3w2BxprtI5IaqcAXy8GxYahqrAt170bdRk/odtHRT1StY1DarfKejP3f7IVVYU7z+3TvBRbd857FKIHQ+kB+P5vWkcjdcDInqIf4ebD7l12MXZCr6+E4j2iIVfMMK2jkdrpsWU7yS+vY3iPMO46v6/W4XScjz9MXwBevrDpHdj7ndYRSe00Mt6W0HPde0s6Yyf0I5mACt2HiV8qSTeWbcnn8835+PuYePGKEfh46fxHNWaIGKkDLPuT7J2uM8nx4tPhltxyVDfu06Pz35JW5G0U13Ep2sYhtUteWS2PfCG2k/v7xYNJigrWOCIHGXenqKnXHoMv7pANvHSkR5cAugb5UlrTyOHSWq3DOSWDJ3RZP9cbi1XlvsVbqapvYuKgblw1WoMe585iMsFlb4J/OOz/ETYs1DoiqY0URTledjnsvmUX4yZ0VW2R0OUIXS/+s2o/G3JKiQ7xc+12cq4SGiu6MgL88AgU7tI2HqnNRrYou7gr4yb0shzx0TYwErokaB2N1AaZh8v4V3oWAC/MGk5EkJuvBu2oQZeI/umWBvj0ZjC7f48QSR8zXYyb0FuOzo02yjOgijozd3+0GYtVZc5ZiUzoq/H+s8524XPQtS8U7ZJTGXViaI8wFAV2Ha2k3mzROpyTMm5Cz5flFr1QVZW/fb6dvLI6hsaF8cCk/lqH5Hy+QTDjLTGVMeMt2P2l1hFJrQjx96FfdAhmi8rOI5Vah3NSxk3o9hku8oSo21uSkcdX244S6OvFK1eNxNfbuD+Wv9N9OKQ9IY6X3QkVedrGI7Xq+IlR9yy7GPM3x1wPR7cBCsQmax2NdBpZhVU8tlzsDfrktCH0jgzSOCIXG3s79J0k9iL99BawNGkdkXQa7r7AyJgJvWAbWM0QNQD8Q7WORjqFukYLd/5vM3VmC5eOiHWPvUFdTVHg0v9AcIxoJLfqWa0jkk5jRE/bTBc3nbpozIQupyvqwj++2snewioSI4N46rKhxpui2FZBkXD5f0ExweoX4MBPWkcknUKf6GCC/bzJL6+jqLJe63D+wJgJPX+TuI4bpW0c0ikt25LPRxty8fU28erVyQTrrYuio/WeAGc/DKiiK2NVodYRSSfhZVIY1iMMgK157td50ZgJ/chmcR0n6+fu6EBxNX/9bDsAf794EINiZVkMgLMeEK0BaorF/HSre06N83RDbQl9e577lV2Ml9DrykWbUi8/iB6kdTTSCeoaLdyxKJOaRgtThnXnmjHxWofkPkxeMH0hBEVDzmpY+YzWEUknMbyHODG6LV+O0J3v6FZxHTMUvHy0jUX6g0eX7WiumxtyaX9nhcSI+emKCVY/D1k/ah2RdIKhcfYReoXbdV40XkK3l1tiR2obh/QHn2zMZemmPPx9TLx+raybn1Lvs+Dcv4rjz26F8lxt45F+p0eXALoE+lBS08iRCvc6MSoTuuQSO/IreHSZaIn71KVDGRAj6+andeb90Gci1JXBkuuhqUHriCQbRVEYaiu7uFsdXSZ0yenKaxu5/cNNNDRZuSKlJzNG9dA6JPdnMoldjsLixayt7x7WOiKphWG2sss2N5vpYqyEXlsK5YfAJxAi+2kdjQRYrSr3LN5Cbmkdw3qE8cS0wVqHpB+BEXDF++IEf8bbsPlDrSOSbJpnurjZiVFjJXT76DxmGHjJ+qw7eHlFFqv2FtMl0IfXr0nG38dL65D0JXYkTHlBHH91LxzZom08EkDzXPRtbnZi1JgJXZZb3EL6rkJeXpGFSYFXrhpJjy6BWoekT8mzIfl60T998WyoKdE6Io8XE+pPZLAfFXVmckvdp5+9TOiSU+wvquKexWI0+cAF/Y3f39zZLvqnWPlccVicJLWYtY7IoynK8RWj2/Ld58SowRK67eOoTOiaqqgzc+v7m6huaGLKsO7cfnaS1iHpn7cfXLEIgruJRUc/PKJ1RB6v5Xx0d2GchF5dBJV54BsMXftoHY3HslhV/vzxZg4eq2FATAj/nCEXDzlMaCzM+gBMPrD+Ddi8SOuIPFrLOrq7ME5Ct4/Ou48QU74kTcz/bk/zSdCF16UQ6CtPTjtU/BiY8rw4/upeOLxe23g8mH2EviO/AqvVPU6MGifzNdfPR2gbhwdbkpHLm79k421SeO2aZHpGyJOgTjHqBki9FSyNsPgaKD+sdUQeKTrUn5hQf6oamsgpqdE6HMBICf2orJ9rKSOnlL99LlaCPjFtMGckRWockcFd+BwkniM6M350FTRUax2RR3K3+eitJnRFUWYoipKmKMrcU9w/z3Y9x9HBtcvRbeK6+3BNw/BEuaW13PbBJhotVm44I4FrxvTSOiTj8/KGme+K80WFO0QPddlu1+UG21o/73KTTaNPm9AVRUkGUFU1HSi33z7BHEVRDgDZToivbWpLxQlRn0CISNQsDE9UUWfmxnc3UlLTyIS+kTwyZaDWIXmOgC5w1WLwD4O9X8OPf9c6Io8zqLtI6Dv1kNCBKwD7JMtsIO0kj7lVVdUkW9LXRoFtdN5tiOgpLblEY5OV2xdtYn9RNf26BfPaNcl4exmniqcLkX3EdEaTD6x9FTYs1DoijzLYdmJ019FKt1gx2tpvXzhQ2uJ215M8JvF0JRmXsJdbYoZqFoKnUVWVv32+nTUHSogM9uPtG1IJ9Zf95zXR+yy45BVx/O1c2PeDtvF4kNgwf8ICfCitaaTADfYY7fRwSlXV+bbReVdFUf4wglcUZY6iKBmKomQUFxd39uVOzj5C7z7MOc8v/cErK/azxNbb/K3rU+Syfq2NuBrOmguqFZbccHzWl+RUiqI019F35mtfdmktoZcDEbbjcOB3TSRsyXqG7WYJ8IcCtqqqC1RVTVFVNSUqyknLv5tH6DKhu8LijYf5V/o+TAq8fOVIhvcM1zokCcSmGENngbkGPpwJpQe1jsgjNCd0N6ijt5bQF3M8SScC6QCKoth/gzPsXwOSbLddq7EWSrJA8ZJ7iLrAT3sK+Wvz9MQhXDA4RuOIpGaKAtNeOz6dcdF0qDmmdVSGZ9/kfNdR7acunjahq6qaCWArpZTbbwMrWtw/yzZKP9Diftcp2iU+Zkb1Bx9/l7+8J8k8XMYdH2ZisarceW4fZo+V0xPdjrevaA8QMxRKs8VIXc5Rd6rBseLEqDuM0Ftdl62q6oKTfG3U6e53qeZNoWW5xZn2FlRx4zsbqTdbmTGqB/dPkhuIuC3/ULjmU3grDY5kitWkV38iGnxJDpcYGYSft4m8sjoqas2EBWo3OUD/c8wKtotrOcPFaQ6X1DL7rfVU1JlJG9iN56YPlQ233F1IN5j9BQRFQ/Yq+PRmsDRpHZUheXuZGBATAojpi1oyQEKXM1ycqaiynmvfWk9RVQNjEyN49eqRcq65XnRNgtmfgV8Y7P4SvvozuMFcaSMa1Fx20baOru/fTEsTFO4Ux3KE7nAl1Q1c89/1HC6tZWhcGAuvS5FbyOlNzFC4ejF4B4h2u989LJO6E7hLCwB9J/SS/dBUL3ZGD+iidTSGUl7byLVvbSDLtgr0vZtGEyIXDulTr3Fw5SLw8hV91H/8u0zqDnZ8potM6B0nyy1OUVlv5rq3N7D7aCWJkUEsumUMEUG+WocldUafNJj5Hpi8Yc0rsOpZrSMylIExoZgUyCqqpt6sXZM0fSf05hkustziKJX1Zq5/ewPb8iroGRHAh7eOITpETgc1hAEXweX/BcUEP8+DVc9pHZFhBPh60TsyCItVZV9hlWZx6DuhF4oFLnLKomNU1JmZ/dYGNh8uJy48gP/dMpbuYQFahyU50uDL4LI3RVJf9SysfEaWXxzEPh9dyzq6zhO67YRot8HaxmEAFbVmZr+1nq255fToEsDHc8bKHYeMatgsuGzB8ZH6T0/JpO4AA7qLqYt7CuQIvf2qi8TyZt8QCI/XOhpdO1bdwFUL17Etr4L4iEAW3zZOJnOjGzbTVn7xgtXPww+PyKTeSQNjxInRPQVyhN5+LUfncpFLhx0pr2PWm2vZdbSS3pFBfDxnLHHhssziEYZcDjPePt5L/cs/y12POsE+Qt9bUKVZb3QDJHTZkKujDpXUMPONtWQX1zAgJoRPbhtHrEzmnmXwpXDVR+DtD5nvwWe3gsWsdVS6FBPqT6i/N2W1ZoqqGjSJQb8JvWiXuJb18w7ZkV/B5f9ZQ355HSPjw1k8ZxxRIbLXh0fqOxGu/UyUL3d8Ch9dKRt6dYCiKAzobi+7aFNH129Ct89wiZYJvb1WZxVzxZtrOVYt9gFddPMYTRsKSW4gYTxcvxwCI2F/Orw3Vbbe7QB7T5c9Gi0w0mdCtzRB0R5xLEsu7fLF5nxuencjNY0WLh0Ry1vXpxLk12rTTckTxCXDzT9AeC/RpfGtiaIFr9RmA2LkCL39SrPB0iCW/PuHaR2NLqiqykvp+7hn8RbMFpU5ZyXy4qwR+Hrr80dAcpKuSXDzj2JtR2k2LDwfDq3VOird0Hrqoj5/m+3lFjk6b5N6s4V7Fm/hpfQsTAo8NnUQf71oICaTnB0knURIN7jxG+gzEepK4f1LYOtiraPShX7dRELfX1SF2WJ1+evrM6HLE6JtVlRZz9UL17FsyxGCfL347/Up3Di+t9ZhSe7OLwSu+hhG3waWRvh8Dqz4h5zW2IpgP2/iIwIxW1QOHqtx+evrM6HLFaJtsvlwGVNf/ZXMw+V0D/Nnyf+dwXkDumkdlqQXXt5w0XyY/E+xqnT1C/DRVVBXrnVkbs1+YnS3BidGdZrQ5QyX1nyyMZcr3lxHYWUDoxMiWH7nmc0tPiWpXcbMEdMaA7pA1vew8LzjkxKkP2ie6aJBHV1/Cb2+EsoPi97OXftoHY3bqWu08OCSrcz9dBuNFivXjevFolvGyDnmUucknQtzVkG3IVB6ABaeK+vqp2Cfi75XJvQ2KNotrqMGiI+EUrMDxdVc+tpvLNmUh5+3ifkzhvGPaUPkTBbJMbokiGmNQ2eCuVbU1ZffDeY6rSNzK1rORdffb3qRrJ+fSFVVPtmYy9R//8rewioSI4P44k/jmZXSU+vQJKPxDYLpC+Hil8DLT7QLWHg+FO7SOjK30atrEP4+Jo5U1FNR59o2CvpL6PKE6O+U1zbyp/9lMvfTbdQ2Wpg6PJZld45nYHdZL5ecRFEg5Ua45UeISBSDrAXnwPoFsmMj4GVSmqcvurrsosOEbhsJRMs56Cv3FnHhS6v5ZnsBwX7evDhrOK9cOULu/Sm5RvfhcNtqGDlbLPT79kFYdDlU5Gkdmeb6d7OfGHVt2UVfCV1Vj89B9+CEXlFn5sElW7nxnY0UVNaTHB/ON3dPYHpyDxTZSlhyJb9gmPYqzPpAzII5sAJeHweZ73v0aL2/rY7u6u3o9HVWsboQ6svFcv+QGK2jcTlVVfl+ZwGPL99FQWU9vt4mHpjUj5vPTMRLrvqUtDToEug5Br6+D/Z8BcvvEp0bp7wo2gl4mL7d7AndtV0r9ZXQi21zX6MGetymFrmltTy2fCc/7SkCIDk+nPkzhtMnOljjyCTJJqQbXLFIJPJvHoTsVWK0PuF+OPMe8PacqbP9uonfy/1FMqGfmn0xQ/QAbeNwobpGC2/+coA3fj5AvdlKiL83cy8cwNWj4+WoXHI/igJDZ0DiOfDDo7D1f7DqGdi2GC54Gvpd6BGDsZhQf0L8vCmtaeRYdQORwa75Y6avGnqxfQ76QG3jcAGrVWXZlnzOe2EVL6VnUW+2MnV4LCvuP5vZY3vJZC65t6BIuOw/cP1XENlPLEb66Er44DKPmOKoKAp9baN0V9bR9ZXQ7SP0qP7axuFEqqry875ipr76K3/+eAtHK+oZHBvK4jlj+fdVI4kO8dc6RElqu94T4PY1cOFz4txX9kp4Yzx8fjuUHdI6OqfqGy3q6FkurKPrp+SiqsdH6NHGG6Grqsr6g6W8lL6PddmlAHQL9eO+if2YMaqnHJFL+uXlA2Nvh6GzYNWzsOkdUYrZvkTMZx9/D4TFaR2lw2kxQtdPQq8qgPoK8A+HYON0DFRVlV+yjvHqT1lszCkDICzAhzvOSeL6MxLw9/HSOEJJcpCgrjDleRh3B6x8ViT0DQsg4x0YeY1I7BHGae1sX1wkR+gn03J0boCTKvVmC8u3HuHtXw82d2ULC/DhpvG9uWF8AmEBcnGQZFARiXD5QjHz5ZfnYefnsOldMXd94FQY+yfoOVr3v+f2hL6vqApVVV2yRkQ/Cb25fq7vGS65pbUs3pjLxxsPc6y6EYDIYD9umdCba8f2Ilju7yl5im6DYeY7cM5f4NcXxYh91zJxiU2G1Jth8GWif4wOdQv1I8Tfm/JaM8XVDS45/6Wf7GGfg67D+nm92UL67kKWZOTxS1Zx8wK6gd1DufnM3kwd3h0/b1lakTxUVD+47A04/++wYaGosR/JhGWZ8N1fYNgsGH4VxI3S1ahdUURPl02HythfWC0T+u8U62uE3thkZc2BY3y17Sjf7SiguqEJAF9vE1OGdufK1J6M7h0hl+pLkl1oLKQ9Bmc9aCvDvAN5G2Hjf8UlIlGcWB00TTel137dgtl0qIx9hVWc0SfS6a+nj4SuqroouZTXNrI66xgrdheyYk8RVfVNzfcN7xHGpSPjuHREHF2CfDWMUpLcnG+gOEk68hoo2AFbPxLlmNJs+Pk5cYlIgoEXQ98LRL3dyz3POfWJttfRXXNiVB8JveooNFSI5j/B0VpH06y2sYnMQ+VsOFjC6v3H2JpbjrVFP6IBMSFcMDiGaSNiSYySS/Qlqd1ihkDM0zDxH3DwZ9FWYM83YqHSby+Li28IJJ4Nvc+CXuNF4z6TeyyxsbcAyHLR1MVWE7qiKDOAciBZVdX57b3fIYparBDV6GNWk8VKTkkN2/Mr2JpbwebccnbmV9DUIoP7eCmM6RXBOf2jmDQ4ht6R+jyZI0lux+QFSeeJy8VNcHgt7P0G9q+AY3tFQ7A9X4nH+odDj1RRc48bBd2HianOGuSOfi2adLlipstpE7qiKMkAqqqmK4qSqChKsqqqmW2932GKXdPDRVVVKurM5JXVkVNSw8HiGg4eq2FvYRVZRdU0Nll/93iTAkPjwhjTO4KxiV0Zl9SVIDlLRZKcy8tbrEDtPUHcLj8MB1bCod8g5zeozIP9P4qLXUCEmFUT1V/sRdy1j9hSL6wH+AQ4LdToED9C/b2pqDNTXNVAdKhzT4y2ln2uAOz/KtlAGpDZjvsdo6htPVxUVcViVTFbVBqbrNQ3Wag3W6gzW6hpaKK6wUJ1fRPldY2U15opszXOKaoSl6PlddQ0Wk75/HHhAQyKDWVEz3BG9AxnaI8wQuVmEpKkrfB4GHW9uKgqVORC/ibbJRMKd0BdKeSsFpcTBUWJE7LBMaKkGxQFgRGixOsfDn4hou+7bzB4+4s/AN7+YqN6L9/TlnfsM10yDpWxr7Ba84QeDpS2uN21nfc7xJ7tGxgA3PRNFRu/+R4VkbxVwKqqWK3i2qKqne6pH+TrRVyXAOIjgkiMCqJ3ZBB9ooPpHxMik7ckuTtFEQk+PF7MYQeR5CvzxfaVJfvF5ViWGNlX5kNNsbiwtYOvaQLFS1ybvADFVt4R14vMFhr9rGStvQn6PuOgN3pyTq8PKIoyB5gDEB8f3/4nUFWiLKIH+NaG7lTRdNqHe5kUfLwUfEwm/Hy88Pcx4e/jRbCfNyH+3gT5ehMe6EN4oC/hgT5EBfsRFSIusWEBhAZ4y6mEkmQkiiJKK2E9gAt+f5/VItqKVBWIDXSqC6CmRIzo68qgrhwaq6GhEhprwFwPTXXQ1AAWs9h6T7WKC8BJPuD7A/4K1NTWOPudtprQy4EI23E4UNLO+1FVdQGwACAlJaX942dFwXfuXqoqclkZFt98YkNBfJwxKWBSFEyKgpdJkU2sJElqO5OXaAzW0eZgqir+KKgWkdStFkC1bb8n0l1FfRNWq8pZIc6f6dZaQl8MpNiOE4F0AEVRwlVVLT/V/Y4WEuAHAX2c8dSSJEkdpyjiJO1pUmmYCzten3aypn3GiqIoaUB5ixksK1q5X5IkSXKxVmvotpLJiV8bdbr7JUmSJNdzj+VUkiRJUqfJhC5JkmQQMqFLkiQZhEzokiRJBiETuiRJkkEoamfXyrfnxRSlGDjUwW+PBI45MBw9kO/ZM8j37Bk68557qaoa1dqDXJrQO0NRlAxVVVNaf6RxyPfsGeR79gyueM+y5CJJkmQQMqFLkiQZhJ4SuieuSJXv2TPI9+wZnP6edVNDl4ynrdsXKooy12nbG0qSE5xu9zZnbtvpliN0RVFmKIqSpijK3I7cr0dteM9zbJd5ro7NGVpuXwiU22+f5HFpwERXxuYsbfg/TrY9ZoarY3OWdvwuz3F1bM5i+5ldcor72vRz31Ful9Bbe8PO/gfRQhvecxqQbmuElmi7rXdXIEYpcHz7QsNq48/tX1RVXYr4P/aEn+tkINt2f7YR3jM0v9/sU9zt1J97t0votP6GjZgIWntPiS2+lm27rXetbl9o+9jqlB77Gjjt/7FtVL4RQFXV+QZpRd2W31X7J85Eg7zn1jh12053TOhusY+pi532PamquqBFm+JkIMNVgWksovWH6EZrP7epQFdb2cUopcTWfq4zESPzshMeJ3WQOyZ06RRsH0kzDTKSOe32hQYbnbdVSYtNYwxTRz8VRVHCET8HzwILFUUxwifP1rS6bWdnuGNC7/Q+pjrU1veUpqrqQ64JyekWc7x09LvtDe1fs50wmwNEGKC+2tr/cQnH667liBG73rX2nucAz9pmetwKGPaPWIuf65P+3DuKOyb01n7RnfoPopHW3jOKosyxT3EywknRNmxvuNR2ghBEMtC71v6Pl7a4PxxbPV3nWv25trP9X5ef+HU9sn26SjnhU5ZLtu10y3notlFZNuJEyQLb1zbZt7472f16d7r33GIaVClixDPTA8sRutfGn+tSINUon8Ta8J7n2u6PMMrvspbcMqFLkiRJ7eeOJRdJkiSpA2RClyRJMgiZ0CVJkgxCJnRJkiSDkAldkiTJIGRClyRJMgiZ0CVJkgxCJnRJkiSD+H/QKXy7tFjwlgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "" ] }, "metadata": {}, @@ -89,10 +84,8 @@ ], "source": [ "x_grid = np.linspace(0, 1, 100)\n", - "f, f_rvs = beta_function_factory(4, 2)\n", - "g, g_rvs = beta_function_factory(2, 4)\n", - "\n", - "fig, ax = plt.subplots()\n", + "f = beta_function_factory(4, 2)\n", + "g = beta_function_factory(2, 4)\n", "\n", "plt.plot(x_grid, f(x_grid), label='$f$', lw=2)\n", "plt.plot(x_grid, g(x_grid), label='$g$', lw=2)\n", @@ -110,14 +103,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4W2edL/Dvq83yIu9rYieOnH1tHSdtEhra4rSlLaVQE9rC9LJ0kg5cBrgXyjozMA8MpA8wFwboxGUoSwuFhBZoKW2d7kvSxE7jLI2dxYmXON4t77K29/6hI8d1HcuLpLPo+3mePLZ1ZOl3YvurV7/3nPMKKSWIiEj/TGoXQEREkcFAJyIyCAY6EZFBMNCJiAyCgU5EZBAMdCIig2CgExEZBAOdiMggGOhERAZhieWTZWdny+Li4lg+JRGR7tXU1HRJKXPC3S+mgV5cXIzq6upYPiURke4JIRqncz+2XIiIDIKBTkRkEAx0IiKDiGkPnYhITV6vFy0tLXC73WqXMim73Y7CwkJYrdZZfT8DnYjiRktLCxwOB4qLiyGEULucd5BSoru7Gy0tLVi0aNGsHoMtFyKKG263G1lZWZoLcwAQQiArK2tO7x4Y6EQUV7QY5iFzrY0tF4opf0Cib8SL3mEP+ke8GHD7MDga/Dc86sOw1w+3N4BRnx+j3gA8/gC8vgC8/gB8AQl/QI59DMjgRykBCYlAIPgRgHLbOJFYaVG881MhAAER/CgAkxAQQsAkALMQMJsELGYBs8kEq0nAajbBahFIsJiRYDEhwWJGos2ERJsFyTYzkhMscNgtSLVbkZZoRXqSFSkJFk0HEGkLA50ixucPoNXlxrnuIVzoHUGrK/ivfcCNzoFRdA6MwjXiBZexnT6rWSArOQE5jgTkOhKQl2bH/PREzEu3oygjCcXZychKtjH0CQADnWZBSom2fjeOtvSh7uIA6tv7Ud82gKaeYXj94dM6LdGKjCQrUhOtcNgtcCRYkZRgRrLNgiSbGQlWM+xWE+wWM6wWE2zm4OjWbLr0MTQCDo2Mg6NjZRCtZFto9Bwyl8gbv1ehdwRjn4feIUggICWklPAHgu9Ggu8oAvD6Jbz+4DsNjy+AUV8Abq8fw57QPx+GRn3od/sw4Pahb9iD3mEvRrx+tPW70dZ/+b6qw26BMycFy/McWJbvwMp5qVgzPw3JCfzzjjf8iVNY/oDEyYv9ONDQjTfP9aC22YWOgdFJ75ufakdxdhKKMpIwLz0R89MTkZdmR05KcJSZmWyD2cTR5HS5vX50DQbf3XQMjKKtz41W1whaXCNo6h7G+a4hDLh9qG12obbZNfZ9JgEszk3BlUUZuLokE1c7s1CQlqjinlAsMNBpUl2Do3ipvhMv1nXg1dOd6Hf73rE91W7B2sJ0rJyXimXKyNCZk4wkG3+lIsluNaMwIwmFGUmTbpdSonvIg9Ptg6hv60dd2wCOtwbfOZ1qH8Sp9kH8oboZALAoOxnXLsvB9ctzsXFRJhIs5ljuiuYUf/VvUXnc89+/Zcrte/fuRXp6OlwuF9LT01FeXh6x5+ZfH43pGhzF34+34cnaVhw63/OOXndRZiKuXpSFq5xZKF2QjuKsZJg40ladEALZKQnITknAppKssdvdXj9OtPajprEHBxp6cPBcD851DeFc1xAefv08UhIs2LYyDx9YV4D3LM6BzcID3mKhoaEBVVVV2L17N77yla9g586dEX38sIEuhCgH8BUp5bZJtqUDCL28bJBSfiWi1VHU+fwBvFjficcONuGlU53wB4IpbjObsKkkC9cvz8V1y3KxIGvyESJpk91qxvqFGVi/MAM7tpbA5w/gSLMLL9R14IW6DtS1DeCJty7gibcuID3JituvmI+7r1qApXkOtUuPmXAj6WjYu3cvtm0LRmlDQwOcTmdEHz9soEsp9wkhLhfU25X7VAohNgghdkgpKyNaIUVF75AHvz3QiEffbER7f7AfbjEJXL88Fx9YV4DyFXlw2Gd3+jFpj8VsQllxJsqKM3H/TctxvmsIfzt2EU/WtqKubQC/euM8fvXGeaxfmIFPbVmEG1flwWLmqD3Suru7UVFREbXHn1PLZUJ4OwHsnls5FG3NPcN46NUG/LG6GW5vAADgzE7GnRuLcEdpIbJSElSukGKhODsZn71uMT573WIcv9CH3x9swl+OtKKmsRc1jb0oykzEve9x4qMbimC3xnevPZJ27tyJw4cPY+/evREfnQMR6qELIZwAeqSUDZNs2wFgBwAsWLAgEk9Hs9De78Z/vXAajx1shk9pq1y7LAf/eI0Tm0u0eSo0xcbq+Wn47ofW4Os3r8Djb13AL15tQGP3MP7tryfw85fO4HPXL8H2siL22SPA6XTC6XSisrISpaWlEX/8SE2KVkgpJ+3uK6P4SgAoKyvjKSUxNjjqw89ePINfvnYOo74AhAA+dOV83PfeEizLj59+KYWXnGDBP1y9EHdvXIDnTrThpy+ewYnWfnzzz8ex+5Wz+OpNK3Dzmny++M9RQ0MD9uzZE/EJUSACgS6EqJBSPqB8Xi6l3Df3smiupJT4a20r/uPpk2M98vevzsf/2bYUS+Jo4otmzmwSeP+aAty4Kh9/P96GH1XV42znED77u8PYXJKFb9+2ir9Dc+B0OlFVVRWVxw77HkoIUQGgTPkYuq1K+VgOYJcQokYIUROVCmnGmrqHcddDB/D5x46gvX8U6wrT8MRnNuPBj6/nHyJNm8kkcMvaAjz7ha34zu2rkZ5kxRtnu3HTj1/F9/9eB7fXr3aJsyI1fO2JudYmYrlzZWVlkotER08gIPHIm4343tN1GPH6kZlsw1dvWo6K9YU8ZpzmrHfIgx9W1ePRN5sgJbAkNwU/+Mg6rCtKV7u0aTt37hwcDocmL6Ebuh76wMDAu66HLoSokVKWhXsMBrpBdPS78YU/HMEbZ7sBALetm4dv37YKGck2lSsjo6lp7MWX99SioWsIZpPA/75uMf75fUt0cUkHva5YxECPI6+e7sQX/3AEXYMeZKfY8J3bV+Om1QVql0UG5vb68cPn6vGL185BSmCTMws/vusK5DrsapdmSNMNdB6HpGOBgMSPqk7hnl8eRNegB1sWZ+Hvn9/KMKeos1vN+MYtK/Hop69CdkoC9jd04+Yfv4b9yjtEUgcDXaeGPT7806M1+MnzpwEAXyxfit986irkOHhiEMXO5sXZePrz78EmZxa6BkfxD//zJn5/sEntsuIWA12H2vrc2L57P5490Q6H3YJff3IjPl+ujx4mGU+uw45H7r0KO7c64QtIfO3xY/jOU2+PXReIYoeBrjP1bQO4/Wev4/iFfizMSsITn9mCrUtz1C6L4pzZJPC1m1fggTvWwmIS+MVr53DfIzW6PbRRrxjoOlLb7MJHK/ejrd+NjcWZeOIzW7A4N0XtsojGbN9QhEfuvQppiVZUvd2OTz58CIOjvvDfSBHBQNeJ/We7cfdDB+Aa9qJ8RS5+8+mNyOQhiaRBVzuz8Medm5DrCE6WfvwXb8I17FG7rLjAQNeB18904RMPH8SQx48PXjEPD358Pa+AR5q2LN+BPfdtQmFGIo40u3Bn5QGGegww0DXu0Pke3Pvraoz6Arhr4wL85/YrYOV1qkkHFmYlY+99m+HMSUZd2wDu+eVB9Lu9apdlaEwGDattduGTDx/CiNePivWF+O7tq3kKP+lKfpodv7v3aizITMLRlj586uFDGPawpx4tDHSNOtUeHNEMjvpw69oC7LpjLcOcdCk/zY5H770KBWl2VDf2YsdvauDxBdQuy5AY6BrUMeDGJx8+hL6R4ATof370Ch5jTrpWlJmER+8NnlX62pkufO3xY5q+6qFeMdA1Ztjjw72/rsYF1wiuXJCOn95dyp45GYIzJwW//EQZEq1m/OlwC/7rhTNql2Q4TAoN8QckPv/YERxt6UNRZiIeuqeMR7OQoawtTMdP7roSQgA/qjqFP791Qe2SDIWBriE/eK4eVW+3Iy3Rioc/sRHZXLCZDGjbyjz8660rAQD37z2KI80ulSsyDga6RjxzvA0PvnQWZpPAgx8v5RmgZGif3LII92xaCI8/gH96pAbdg6Nql2QIDHQNONs5iC/tqQUAfO39y7G5JFvlioii75u3rMT6hRm42OfG537/Fnx+HvkyVwx0lQ2N+nDfb2swOOrDLWsK8On3LAr/TUQGYLOY8POPlSI7JQFvnO3GD547pXZJusdAV9m//OU4TncMYnFuCnZVrNXcOodE0ZSXasdP774SZpPAf798Fi/Wdahdkq4x0FX019pWPH74AuxWE/7746VISbCoXRJRzF3tzMKXb1wGAPjy3lp0DrCfPlsMdJVccI3gG08cAwD8y60rsTjXoXJFROrZcY0Tm0uy0DXowf17a3nS0Swx0FXgD0h88bEjGHD7sG1lHu7euEDtkohUZTIJ/HD7OqQlWvFifSd+s79R7ZJ0iYGugt2vnMXB8z3IcSRg1x3smxMBQEFaIr7/4TUAgO8+fRJnOgZUrkh/wga6EKJcCFE1xfYK5T73R7Y0YzrTMYj/ty+4sPMPPrKOi1QQjfP+NQX4yPpCeHwB3L/3KNclnaGwgS6l3He5bUKIinH3cQkhyiNYm+EEAhJf/dNReHwBbC8rxHu5FijRu3zz1pXIdSTgcJMLv91/Xu1ydGWuLZcNABqUzxsAlM7x8QzttwcaUd3YixxHAr5x80q1yyHSpLREK75z+2oAwAPP1qO5Z1jlivRjroGePuHrrIl3EELsEEJUCyGqOzs75/h0+tXSO4xdz9QBAL5z+2qkJVlVrohIu25YlY9b1xZg2OPH15/gpXana66B7gKQOdUdpJSVUsoyKWVZTk78thj+9S8nMOzx45Y1BbhxVb7a5RBp3rduW4X0JCtePd2FPx/hVRmnY66BfgiXRulOAJedPI1nz59sxwt1HXAkWPBvt7HVQjQd2SkJ+MbNKwAA//F0HQa4HmlY0znKpQJAWWgCVLmtCgCklHsBOEOToVNNoMYrt9ePbz/5NgDgC9uWItdhV7kiIv24o7QQVy5IR+fAKH7y/Gm1y9G86RzlsldKmaGEd+i2beM+f0BKuU9KWRmtIvXsoVca0NQzjKV5Kbhn00K1yyHSFZNJ4N9vWw0hgIdfP4/T7Tw2fSo8sSiKWnqH8bOXgstsfeu2VVxKjmgW1hSm4a6NC+ALSHzryROcIJ0CEyaKvvd0HdzeAG5dW8BrnBPNwZdvWIb0JCteP9ONZ0+0qV2OZjHQo+Stpl787dhF2K0mfF2Z2CGi2clItuH/blsKANj1TD28XAxjUgz0KJBS4nt/Dx5z/qktizAvPVHlioj0786NC+DMTsa5riE8dqhZ7XI0iYEeBS/UdeDguR5kJFlx37UlapdDZAhWs2nsuuk/3ncKg6M+lSvSHgZ6hPn8AXxfGZ1/7volSLXzjFCiSLlpdT6uXJCOrkEPHnqlIfw3xBkGeoT96XALTncMoigzER+7mtc5J4okIcTYnNRDrzagY8CtckXawkCPoFGff+zSuF+6YRkSLGaVKyIyng3Fmdi2Mg/DHj9+/uJZtcvRFAZ6BP2xugUX+9xYnu/AB9bOU7scIsP60g3BXvrvDjahvZ+j9BAGeoSM+vz4+YvBk4i+UL4EJhNXISKKlmX5DtyypgAeXwAPvsRReggDPULGj85vWMmrKRJF2z+/bwkAjtLHY6BHAEfnRLHHUfq7MdAjgKNzInVwlP5ODPQ58voDeJCjcyJVjB+l736Zx6Uz0OfoydpWtPa5sSQ3haNzIhV89rrFAIDHDjXBNexRuRp1MdDnQEo5NirYsdXJ0TmRClbOS8XWpTkY9vjxyIFGtctRFQN9Dl461Yn69gHkpSbgg1fMV7scorh131YnAOBXb5yH2+tXuRr1MNDnYPfLwZn1T79nEWwW/lcSqWVTSRbWzE9D16AHfzrconY5qmEKzdKRZhcONPTAkWDBXRt5zRYiNQkhsEMZpT/0SgP8gfhc1YiBPkuVrwRH53dfvQAOXlGRSHXvX52PosxEnO8ejttVjRjos9DcM4xnjrfBahb41JZFapdDRAAsZhP+8ZrgKP1/XjuncjXqYKDPwiMHGhGQwC1rCpCXale7HCJS3FFaCIfdgprGXhy/0Kd2OTHHQJ+hEY9/bPmr/7W5WN1iiOgdkhMs+Mj6IgDBI17iDQN9hv5y5AL6RrxYV5iGKxdkqF0OEU1wz6aFEAL4a20rugdH1S4npsIGuhCiQghRLoS4P8z2HZEvT1uklGOv+hydE2lTcXYyrl2aA48vEHeLSU8Z6EKICgCQUu4D4BJClE/YXg6gQdneIIQojVqlGnDofC/q2gaQnWLDLWsL1C6HiC4jNOB69EAjfP6AusXEULgR+gYAoSveNACYGNjVAPYoQe6UUh6e+ABCiB1CiGohRHVnZ+ecC1bTr5XR+V0bF3B5OSIN27okB4uyk9Ha58a+k+1qlxMz4QI9fcLXWeO/kFK6AOwGsAdAyWQPIKWslFKWSSnLcnJyZl2o2jr63XjmRBvMJoGPXbVQ7XKIaAomk8A9m4J/p7/ZHz/XdwkX6C4AmZfbqLRk9kkpS8Z9bUh7alrgD0iUr8hFfhoPVSTSug+XFsJuNeGNs91o7B5Su5yYCBfoh3BplO4EUDVh+/g2y/cwRfjrWSAg8QdlcuVOnuZPpAtpiVbcvCY41/WHOJkcnTLQpZR7AThDk6HK5CeEEKFgr1R65OUAtkspK6NarUr2N3SjqWcY89Ls2LpEv20jongTus7SnpoWeONgctQS7g5SygcmuW2b8tEFwJAhPl7o0KePlBXBzGueE+lG2cIMlOQk42znEF6s68ANq4y9CA1PLAqjZ8iDZ4+3QQhg+4YitcshohkQQuDODcFRejwck85AD+Pxwy3w+AN479IczE9PVLscIpqhD5fOh9Us8FJ9By72jahdTlQx0Kcg5bjJUI7OiXQpKyUBN6zMR0ACe6qNvfgFA30KtS19ON0xiOwUG963Ik/tcoholu7cGByQ7alphpTGXfyCgT6Fx5WlrD54xXxYzfyvItKrzSXZyE+1o7lnBNWNvWqXEzVMqcvw+AJ4srYVQLAHR0T6ZTYJ3H5l8O/48cMXVK4mehjol/FSfQd6h71YlufAyoJUtcshojkKDcyeOtoKt9evcjXRwUC/jCfeCr6Kf6h0PoTgsedEerc0z4FV81Ix4PbhhboOtcuJCgb6JPqGvXj+ZAeEAG6/gu0WIqP4cGkhAOO2XRjok3jqWCs8/gC2lGTzQlxEBnLbunkwm4LHpBtxNSMG+iSeUF69ORlKZCw5jgRsXZINX0DiqaMX1S4n4hjoEzR1D6O6sReJVjNuNPh1H4ji0YdCbZe3jNd2YaBP8NSx4KGKN6zKQ3JC2GuXEZHObFuRhySbGbXNLjT3DKtdTkQx0Cd4qjb4NuzWtfNUroSIoiHRZka5cua30douDPRxGjoH8fbFfjgSLNi6NFvtcogoSkKLvD91tFXlSiKLgT7O35RX622r8rgINJGBvXdpDhwJFpxo7ce5LuMsT8dAHyf09usDbLcQGZrdasa2lcG2y98MNEpnoCtOtw+gvn0AaYlWbFnMdguR0V1quxinj85AV4R+qDeuyoPNwv8WIqO7ZkkOUu0W1LUN4EzHgNrlRASTC8GFLEKTIzy6hSg+2CymsXNNjDJKZ6ADqG8fwNnOIWQkWbGpJEvtcogoRozWdmGgA3jmeBsA4MZV+VzIgiiObFmcjbREK850DOJs56Da5cwZ0wvAsyfaAYCn+hPFGavZhPctzwUAPHuiTeVq5i5soAshKoQQ5UKI+y+zvVS5T0Xky4u+5p5hnLzYj2SbGZsXs91CFG9uUAZyzykDOz2bMtBDIS2l3AfAJYQon+RuO6WUewE4hRDOKNQYVaFX5WuX5/JkIqI4tHVpNhIsJhxpdqGtz612OXMSboS+AUCD8nkDgNLxG4UQOwDUCCGcUsoHpJQNEx9A655ju4UoriXZLNi6NAcAUPW2vtsu4QI9fcLXE3sSJcq/HiHEbiHExPtDCLFDCFEthKju7OycQ6mR1zU4iurGHljNAtcty1G7HCJSSWhA99zb+m67hAt0F4DMMPc5K6V0AagBsGPiRillpZSyTEpZlpOjrdB8/mQ7AhLYXJINh92qdjlEpJL3Lc+F2SSw/2w3+oa9apcza+EC/RAujdKdAKom2R6SjuALgG7w6BYiAoCMZBs2FmfCF5B4oV6/o/QpA33cZGe58vU+ABBCVI3bnj5ue2V0y42cwVEfXjvdBSEwdpEeIopfN64K5sCzx/Ub6GGX5JFSPjDJbdsm2b4vgnVF3SunOuHxB7B+YQZyHAlql0NEKrthVT6+9eTbePlUJ9xeP+xW/R31FrcnFj1/sgMAxlYuIaL4Ni89ESsLUjHi9eNAQ7fa5cxKXAZ6ICDx8qlgoF+vnCVGRBTKgxfrOlSuZHbiMtCPXuhD16AH89MTsTQvRe1yiEgjrl8RDPQX6jsgpVS5mpmLy0B/oe7S6FwIoXI1RKQV6wrTkZlsQ3PPiC4v1hWXgf5iHdstRPRuZpPAtcpZoy/osO0Sd4He0e/GsQt9sFtNvPY5Eb3LdcpAj4GuAy/VBy8/sLkkW5eHJRFRdG1dmgOzSaD6fC/63fo6azTuAj30qnsd2y1ENIm0RCvWL8yALyDx6qkutcuZkbgK9FGfH6+eDo7Q2T8nossJLXrxfJ2+zhqNq0A/dK4XQx4/luc7MD89Ue1yiEijQgO+l+s7EQjo5/DFuAr0V5TR+bXLODonostbnJuC+emJ6B7y4ERrv9rlTFt8BfqpYKBvXZqtciVEpGVCiLFFL0IDQT2Im0Dv6Hejrm0AiVYz1i/MULscItK4rUuCA7/QQFAP4ibQXz0dnK2+2pnJtUOJKKzNJdkwCeBwUy8GR31qlzMtcRTowVfZa5Zoa9UkItKmtCQr1hWlw+uXeFMnV1+Mi0APBCReOxMcobN/TkTTFRoAht7ha11cBPrJtn50DXpQkGZHSQ6vrkhE0zPWR9fJxGhcBHro1fWaJdm8uiIRTdu6onQ4Eixo6BxCS++w2uWEFSeBzv45Ec2c1XzpIn6v6aDtYvhAH/b4cOhcL4QAtixm/5yIZuYaHR2PbvhAf/NcDzz+ANbMT0Nmsk3tcohIZ0J99NdOd8Gv8csAGD7QXx/XPycimqmFWclYkJmEfrcPxy70qV3OlAwf6G+cDR4/urmEgU5Es7NZ6aPvP6vt49ENHei9Qx6cbOuHzWzi6f5ENGuhidH9Gj/BKGygCyEqhBDlQoj7w9xvV+TKiow3z3VDSqB0YTpXJyKiWQsF+qFzPfD4AipXc3lTBroQogIApJT7ALiEEOWXuV85AGfky5ub0NujTU62W4ho9nIddizOTcGI14+jLS61y7mscCP0DQAalM8bAJROvIMQwjnuPpoy1j9fzMWgiWhuQn30NzTcRw8X6OkTvp4sGZ1SyssGuhBihxCiWghR3dkZu+M4OwdGcbpjEIlWM9YVTtwNIqKZ2eTU/sRouEB3Aci83EYhRLnSjrksKWWllLJMSlmWkxO7MzVDkxdlxRmwWQw990tEMXC1Eug1Tb1we/0qVzO5cEl3CJdG6U4AVRO29ygTphUAnEKId7Vk1LL/bPD4cx6uSESRkJFsw8qCVHh8ARxu7FW7nElNGehSyr0IBnW58vU+ABBCVClfH1Zuy8S72zOqGpsQLWH/nIgiQ+uHL4btRUgpH5BS7pNSVo67bduE+1RKKUuklIejUeRMtbpGcL57GI4EC1bPS1W7HCIyCK1PjBqyuRwanW9clAmL2ZC7SEQq2LAoEyYB1Da7MKTBZekMmXYHGthuIaLIS7VbsWZ+GnwBiWoN9tENGegHz/cAAK5axEAnosi6ynnprFGtMVygd/S70dg9jGSbGSsKHGqXQ0QGs6E4eCR3aOCoJYYL9NB/8vpi9s+JKPI2FAcv9Hek2YVRn7aORzdc4h1U3gZtLObVFYko8tKTbFiW54DHF8DRFm1dH92wgR56W0REFGkbFgUHjAc11kc3VKD3DXtR3z4Am9mEdUWaOs+JiAxko3LABQM9iqobeyAlsK4ojdc/J6Ko2ah0AA439mpqnVFDBXpoQnTjIrZbiCh68tPsWJCZhIFRH05e7Fe7nDHGCnT2z4koRsYOX9RQ28UwgT7i8eNYSx9MAlw/lIii7iqlE3BIQ8ejGybQ32rqhS8gsXJeKhx2q9rlEJHBbVh0aYQupTb66IYJ9LH+eTFP9yei6CvOSkKOIwHdQx40dA2pXQ4AAwV6jXKhnA08oYiIYkAIMXa0S815bVyoyxCB7g9IvNUUXImb/XMiipUrFwTPd6nRyJUXDRHopzsGMDjqQ2FGInJT7WqXQ0RxIjSAPNzEQI+Y0Ktj6QKOzokodlbNS4PNYsLpjkH0DXvVLscYgX64ke0WIoo9m8WEtfPTAABvNas/SjdGoDdxhE5E6igNtV000EfXfaB3D47iXNcQEq1mLOeCFkQUY6GBZI0G+ui6D/TQ0S1rC9Ng5YIWRBRjpQuDR7ocaXKpfqEu3Sdg6FWR/XMiUkOuw46izEQMefyobxtQtRbdB3qob8VAJyK1rF+gjcMXwwa6EKJCCFEuhLh/km3pyvYKIcSu6JR4eV5/ALUtwZbLlZwQJSKVaGVidMpAF0JUAICUch8AlxCifMJdtgPIlFLuVe6/IypVXkbdxQG4vQE4s5ORmWyL5VMTEY0p1ckIfQOABuXzBgCl4zdKKSullJXKl04A+yY+gBBihxCiWghR3dnZOdd636GmMXhBLo7OiUhNy/MdSLKZcb57GF2Do6rVES7QJy7MOemlDIUQTgA9UsqGiduU0C+TUpbl5OTMsszJ1fD6LUSkARazCesKg3GpZtslXKC7AExn+Z8KKeXOCNQzI7XNwUC/ggtCE5HKQhfqCs3rqSFcoB/CpVG6E0DVxDsIISqklA8on0/ssUdNz5AHTT3DSLSasTQvJVZPS0Q0qXXKwLK2uU+1GqYMdGWy0xkKamVyFEKIKuVjOYBdQogaIURNtIsdL/QquGZ+Giw8oYiIVBbqFNS2uBBQ6QSRCBqHAAAFx0lEQVQjS7g7hEbfE27bpnzcB6AkCnWFFWq3rCtKU+PpiYjeIS/VjvxUO9r63TjXPYSSnNh3DnQ7tL0U6OyfE5E2hAaYoXyKNV0GupQStS3BPlVoZpmISG2X+ugM9Glr6R1Bz5AHWck2FGYkql0OEREA4AplgHmkRZ2JUV0G+pFx7RYhhMrVEBEFrS5MgxDAydZ+jPr8MX9+XQb6WP+c7RYi0pBUuxUlOSnw+AOouxj7Ky/qM9BbeIQLEWlTaKCpxglGugt0rz+AYxc4IUpE2nSFMtA80sRAD+tUe/AKiwuzkpDBKywSkcaEjnQ5whF6eKHTajk6JyItWp6fCpvZhIbOIfSNeGP63DoMdJ5QRETaZbOYsHJeKgDgWIwPX9RfoIcmRAs5IUpE2jT+ui6xpKtAd3v9ON0xCJMAVs1joBORNq2eH8yn4xc4Qr+skxf74Q9ILM5NQaLNrHY5RESTWqME+jEG+uUdb+0HAKzm6JyINKwkJxl2qwktvSNwDXti9rz6CnRlgiH0doaISIssZhNWFAQnRo9f6I/Z8+oq0ENvX9ZwQpSINE6NtotuAt3t9eNU+wCEAFYqr3xERFqlxsSobgK9vm0AvoBESU4KkhPCLrRERKQqjtCncLxV6Z/P4+iciLRvcW4KbBYTmnqG0TccmzNG9RPoFzghSkT6YR03MXqiNTajdN0E+tiEKAOdiHRizXzlEgAxarvoItBHfX7UtwUnRFcx0IlIJ2LdR9dFoJ9uH4TXL7EoOxkpnBAlIp0ItYhPtMbmWPSwgS6EqBBClAsh7p/N9kgIvbrxDFEi0pMluQ7YzCac6xpCvzv6E6NTBroQogIApJT7ALiEEOUz2R4p7J8TkR7ZLCYsL3AAAE7E4IzRcCP0DQAalM8bAJTOcHtE8AgXItKrWJ5gFC7QJ64ikTXD7RBC7BBCVAshqjs7O2daH6SUMJsEbGYTVs3nMehEpC9r5qfBYbfA7fVH/bnCzTC6AGTOYTuklJUAKgGgrKxMzqg6AEIIPPGZLfD4ArBZdDGHS0Q0pmJ9Ie7cUAQhRNSfK1ygH8KlUbgTQNUMt0cMw5yI9Mhqjl12TflMUsq9AJyhyU5l8hNCiKqpthMRUeyFPahbSvnAJLdtm2o7ERHFHvsYREQGwUAnIjIIBjoRkUEw0ImIDIKBTkRkEELKGZ/rM/snE6ITQOMsvz0bQFcEy9ED7nN84D7Hh7ns80IpZU64O8U00OdCCFEtpSxTu45Y4j7HB+5zfIjFPrPlQkRkEAx0IiKD0FOgV6pdgAq4z/GB+xwfor7PuumhExHR1PQ0Qicioikw0ImIDEKTga6Fhaljbap9EkKkK9srhBC71KgvGqb7czTKPk/j97o09HOOdW3RMoO/5R2xri1alP257NoQ0cwvzQW6VhamjqVp7NN2AJnK9edhhF/+6f4cldudsawtGqa5vzvHrTFg+H1Wvm5QtjcIIaKyJnGsTbUuRLTzS3OBDo0sTB1jU+6TlLJSWcoPCIabERYSCftzVEKtYeLtOjXl/iov0jVCCKeU8gEppRH2O9zPuBrAHiXInVLKw7EsTiVRzS8tBvqcF6bWoWntkxJwPQb5Y5/OPjsNsq9A+P0tUf71CCF2CyEm3l+PptxnKaULwG4AexDc93gQ1fzSYqDPeWFqHZruPlVIKXdGu5gYmXKfhRDlBlvScDo/47NKyNUA0H1bDeF/xhUA9kkpS8Z9bXRRzS8tBrpmFqaOobD7JISoCC33Z4R5A4Tf5x5l4qgCwZ6y3ltr0/m9DklH8A9f78Lt8/g2y/dgvIHaZKKaX5oL9HhcmDrcPiu37xJC1AghatSrNHKm8XM+rNyWiXe/TdWdaf5ep4/brvszKcPtM4BKIcQOZft2I+wzMPZOo2z8O45Y5RfPFCUiMgjNjdCJiGh2GOhERAbBQCciMggGOhGRQTDQiYgMgoFORGQQDHQiIoNgoBMRGcT/B0ZvZxREFFQIAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XdYnNedL/DvmcIMvRchEGhUkCyrIZB7kY3jJC6xY9nyxpus15uQ5mx293lWLjfPJpvNjWNn72azucmNcKrjxFYix72jxE2WLQGShYrVAAkQgqEMfZh27h/zDsIYGBAz85b5fp6HRzPzDsxvKF+d95zzniOklCAiIv0zqV0AERFFBgOdiMggGOhERAbBQCciMggGOhGRQTDQiYgMgoFORGQQDHQiIoNgoBMRGQQDnYjIICyxfLGcnBxZWloay5ckItK9+vr6billbrjnxTTQS0tLUVdXF8uXJCLSPSHEqdk8j10uREQGwUAnIjIIBjoRkUHEtA+diEhNXq8XbW1tcLvdapcyJbvdjqKiIlit1vP6fAY6EcWNtrY2pKamorS0FEIItcv5CCklenp60NbWhsWLF5/X12CXCxHFDbfbjezsbM2FOQAIIZCdnT2vswe20EkVPn8AQ2M+DLqDH8MeH4bHfBj1+OH2+THmDWDMF4DHF4DHH4DXH4A/IOELyOC/fomAPPchJRCQABDcUlHK4EeIxPy3WhQ4FwJCBD8AEbwNwCQETCL4h2k2CVhM5/61mE2wmk2wmgVsVjNsFhNsFhMSrWYkJViQZDMjxWZBqt2CVLsVyQlmTYaOEWj5+zrf2hjoFFE+fwBnXG60uUZwxuXGGdcoOgfccA6OwTk0ht5hD/qGPRhw+9QuVdMsJoGMJCsykxKQnZKA3FQ78lJtKEizozAjEYUZdhRnJSE7OUHTAUWxxUCn8+IPSJx0DuFIxwCOnh3Esc5BNHUPo7V3BF5/+NawEECqLdgaTbVbkGyzICnBjESrGXarGXarCXarWWnVmpBgFjCbTLCYz7V8Qy1ik0lAiGD7OdhaFuOvISa95vn6aGv/3P2AVNr+UiIgoZwxAIGAhF8Gzya8/gB8/uC/Hn/wrGPMF4Db68eox49Rrx/DHj+G3F4MjfkwMOrDqNeP7iEPuoc8ON41fV2pNgtKc5KxJDcZZQVpWFGQigsK05CfZj//N0u6xUCnWekf9WJvcy/2tPRif6sLB9v7MeLxT/ncgjQ7irMSlZZkIgrS7MhNtSE31Ybs5ARkJiUgLdEKs4kty+mM+fxwjXjRN+JB96AHziE3ugbG0NEfPOtpd43idM8IBsd8aGzvR2N7P4Az459fkGbHmqJ0rF+UiYsdWVi9MB0WM4fMJiq9/8WofN2WH9ww4/EdO3YgIyMDLpcLALB58+aIvfasAl0IUS6lbJjmWLVyc4mU8r6IVUaq8gck9rf24S8fduHNY04cOjPwkVYqABRlJuKCBWkoK0hFWUEqluSmoCQ7CUkJbCfMl81iRn6aOdjSLpj6OVJK9Ax70NI9jONdQzh6dhAfnh3AoTMDODvgxtnDbrx2uBMAkJxgxsbFWdi0Ig+byvJQnJUUw3dDIU1NTXj99dexbds23HfffdiyZUtEv37YvzwhRBWAbQCWTHOsVkrZJIT4kxCiSkpZG9EKKWZ8/gDea+rF8x+cwWuHz6JvxDt+zGoWWFecgYsWZ2NDSSbWFKUjO8WmYrUkhEBOig05KTZUlGaNPx4ISDT3DGP/aRfqTvXh/aYeNHUP469HnfjrUSeAQ1ien4IbVhfiprUL4MhNUe9NqChcSzoaduzYgeuuuw5AMNzLy8sj+vXDBrqUslYI0TTNYYfyUQOgSblNOnOiaxBP7GnFs/vb0T3kGX98UVYSrlmRh00r8rCxNAuJCWYVq6TZMpkEluSmYEluCm7bUAQA6Bxw461jTvz1aBfePtaNY51DONZ5DD+qPYZVhWm4o6IYt6xfiPTE87ughWanp6cnol0sk83r3FhKWTPhbjmA7fMrh2LF5w/gpYNn8bvdLdjb0jf++OKcZNy0thA3rlmAZXkpnEFhEPlpdtxeUYzbK4rh8QXw7sluvHCgA68ePItDZwbw7ecO4aGXj+CG1YX4+8tKceHCdLVLNqQvf/nLaGhowI4dO+BwRL79G5HOTiFEOYCG6frZSTuGx3zYvrcVv3ynGe2uUQDB/tWb1y3EnZXFWFOUzhA3uASLCVeX5eHqsjx875YL8frhTjy59zR2nejBUw1teKqhDZctzUb1lUtw5bIc/j5EkMPhgMPhQE1NTcS7W4DIzXKpmm5AVBk0rQaARYsWRejlaK7cXj8ef+8UfvbGSfQOB7tVHDnJuOfyxbh1/UIk2ziQGY/sVjNuWluIm9YW4lTPMB7bfQpP7gmG+64TPVhbnIGt15fhsqU5apdqGE1NTdi2bRseeOCBiH9tISdPXZjqSUK8LqW8bsL9DCmlS7ldHep6CTcoWlFRIbnBRWwFAhI76tvwo9pj6OgPXlK8rjgDX716Ca5bmQ8Tpw7SJP0jXvx+zyn86p3m8TGVSxzZePDTK7G6SN9dMUeOHMHKlSvVLmNGU9UohKiXUlaE+9ywE1OFEJsBVCj/huxUjlUBeFgIcVII0TflFyDV7G914daf7cLWpw6go9+NlQvS8Ku7K/D01y7F9asKGOY0pfQkK7529VK8+a+b8K/XlyHNbsHuph7c/NN38ODTjegb9oT/Iho2m0asWuZb26xa6JHCFnps9I968dBLR/Dk3lYAQH6aDQ98aiVuXlvIEKc56x/x4id/OY7fvNsCX0AiPdGKBz+9AndUFOuuf725uRmpqamaXKArtNri4ODgx1ZbnG0LnYFuMG8c7cL9TzXi7IAbVrPAF69w4N5NS9lHTvN2vHMQ33n+EHad6AEAXLU8Fz+4bTUWpCeqXNns6XU9dAZ6nBn1+PHdFw7hiT3BVvm64gz85+1rsDQvVeXKyEiklHh2/xl8+7lD6B/1ItVuwXc/swq3ri9SuzRDm22gs9lmACe6BvG13zfgWOcQEiwm/Mt1y/HFyxdz7Q6KOCEEblm/EJcuycaDTx9E7ZFO/PP2D/DeyV78+2dWwW7lxWdq4l+8zj29rw03/WQXjnUOYUluMp679zJ85aolDHOKqrw0Ox79wgb84LOrYbOYsL2uFbf8dBdOOofULi2u8a9ep/wBiYdeOoJ/3v4BRr1+3LKuEM/dezlWFKSpXRrFCSEE7ty4CM98/TIszknGh2cHcctPd+Ht4061S4tbDHQdGh7z4SuP12PbW02wmAS+d8uF+NGWdRz4JFWsXJCG579xOT65qgCDbh/u/vVePP7eKbXLiksMdJ3pGnTjjm278frhTqTZLXjsno3424tLNDcFi+JLis2Cn91Vjq9dvQT+gMS3njmI771wGIGAdud8GxEDXUfa+kZwx89349CZAZRmJ+GZr1+GS3lJNmmEySSw9ZMr8J+3r4XVLPCLd5qx9akD8PkDapcWNxjoOnGiawi3/3w3WnpGcOHCNDz11Uvjdh1r0rbNG4rwq7srkWg1Y0d9G77xxD6M+abe3Yoii4GuA0fPDmLLtt3o6HejsjQTf/jSxdxcgjTtimW5ePyLG5Fqt+Dlg2dR/Vg9Qz0GGOga1+Qcwl2/eB89wx5cuTwXj91zEdLs3ISAtG9DSRaerL4Y2ckJePOYE1///T542f0SVQx0DWvtHcFdv3gf3UNjuGxpNmo+v4G7BpGurCpMx+NfvAjpiVblIqT98HOgNGoY6BrVNeDGXb94Hx39blSUZOLRL1TwKjzSpZUL0vDYPRuRYrPghQMduP+pA5pe8VDPGOgaNDzmwz2/3YvTvSNYU5SOX/19JZISOMec9Gttccb4QOmf6tvw37XH1S7JkBjoGuMPSHzzyX042D6Akuwk/PruSvaZkyFsXJyF//u59TAJ4Mc7j+Op+ja1SzIcBrrG/McLh1F7pAsZSVb8+u5KzmYhQ7l2ZT6+c/MqAMD9fz6A3Sd7VK7IWBjoGvK7907hN++2IMFsQs3nKzjPnAzpC5eU4h8uXwyvX+LLv6vDqZ5htUsyDAa6RtSf6sN3nz8EAHhk8xpsXJylckVE0fPgp1fiugvyMeD24cu/q8eoh3PUI4GBrgHOwTF87ff18Pol7rlsMW5Zv1DtkoiiymwS+D93rIVDWaXxwacbOfMlAhjoKvP5A7j3Dw3oHBhDZWkmHvj0CrVLIoqJNLsVP//8BiRazXh6Xzt+xxUa542BrrL/ev0Y3m/uRW6qDT/9XDms3JiC4sjy/FQ8snkNAOC7zx/GgTaXyhXpG9NDRbtP9uD/vXkSJgH89HPlyEuzq10SUczdtLYQd19aCl9A4ptP7sfwmE/tknSLga6S/hEv/uWP+yElcO81yzgISnHt/k+twIqCVDR3D+M/Xjisdjm6NatAF0KUz3BssxCiSgixNXJlGZuUEg8+3YiOfjfWL8rAP16zVO2SiFRlt5rx4zvXI8FiwpN7W/FyY4faJelS2EAXQlQB+NM0x8oBQEpZC8A1U/DTOU81tOPFxg4kJ5jx31vWcUNnIgBlBal48FPBSQH3/7kRnQNulSvSn7BJooR10zSHtwAIjWI0AaiKUF2G1TXgHp9v/u+fuRAl2ckqV0SkHX93aSmuLstF/6gX33rmIKcyztF8m4YZAHon3M+e59czvH979hAG3D5sKsvFbeWcb040kRACD312NVJsFrx+uBMvNZ5VuyRd4bl+DL3U2IFXDp1FcoIZ//vW1dzYmWgKC9ITx6/H+PZzB9E37FG5Iv2Yb6C7AISmZ2QA+NhKO0KIaiFEnRCizul0zvPl9Ms14sG/PXsQAHD/p1eiMCNR5YqItOtvKhfhosVZ6B7ycNbLHJxXoAshMpSb2wE4lNsOALWTnyulrJFSVkgpK3Jzc8+vSgP4/ktH0D3kwcbFWbhr4yK1yyHSNJNJ4OHb1sBmMeHP+9rx1rH4bQzOxWxmuWwGUKH8G7ITAKSUDcpzqgC4QvfpoxpO9+GPdW1IMJvwg8+uhsnErhaicEpzkvFPVcsBAN957hA8Pu5HGs5sZrnskFJmSil3THhsw4TbNVLKWillTbSK1DN/QOLbzwZntXzxisVcEpdoDv7h8sVw5CSjqXsYv9rVrHY5msdB0SjbvrcVje39WJBux728gIhoThIspvENMf5n53Gc7efc9Jkw0KOob9iDR179EADwv25YyX1Bic7Dlctzcf2qfIx4/Pj+S0fULkfTGOhR9F+vH4NrxItLHNm4YfUCtcsh0q1v3XABbBYTnvvgDN5v4rZ102GgR8lJ5xD+sOc0TAL4zs2rOOecaB6Ks5Lw1auXAAC+//KHvIJ0Ggz0KPnhK0fhD0hsqSxGWUGq2uUQ6d6XrnAgN9WGD1pdvIJ0Ggz0KKg/1YdXDp2F3Woan3ZFRPOTbLPgn6qWAQB++OqH8Po5jXEyBnqESSnxg5eDAzdfusKBfG5aQRQxWyqK4chNRkvPCJ7Yc1rtcjSHgR5hrx/uxN6WPmQlJ6D6Skf4TyCiWbOYTbjvk8F1Xn5cexyDbq/KFWkLAz2C/AGJH756FADwj9csRardqnJFRMbziQvysaEkEz3DHvzyHV5sNBEDPYJeauzA8a4hLMxIxOcuKlG7HCJDEkKMt9J/+U4z+kfZSg9hoEeIPyDxPzuPAwDuvWYpEiz81hJFy8bFWbh0STYG3T78mksCjGPqRMjE1vlt5UVql0NkeN+8Njjjha30cxjoEcDWOVHsXeTIZit9EiZPBLB1TqQOttI/ioE+T4GAxE/+wtY5kRomttJ/s6tF7XJUx/SZp78e7cKxziEsSLezdU6kgm9cE2yl/3Z3C0Y9fnWLURkDfZ62vdkEILgQP1vnRLF3sSMLa4sz0DvswY76VrXLURUTaB7qT/VhT0sv0uwW3Ml9QolUIYTAV5Srsh99uxm+OF7jhYE+DzVvnQQA/O3FJUixcfMKIrV8YlUBSrOTcLp3BK8cit+VGBno5+mkcwivHe5EgtmEuy8rVbscorhmNgl88YpgK33bm01xu146A/08/eLtJkgJ3LZhIfJSuaIikdo2byhCdnICGtv7sftkfO5qxEA/Dz1DY3iqoR1CYLxVQETqslvNuPvSUgDAo283qVuMShjo5+HJva3w+ALYVJaHJbkpapdDRIq7Li5BgsWEN4450dI9rHY5MRc20IUQm4UQVUKIrWGOV0e+PO3x+QN4/L1TAIC/U1oDRKQNWckJuHltIaQEHtt9Su1yYm7GQBdClAOAlLIWgCt0f9LxJuV40+TjRvTa4U509LvhyEnGFUtz1C6HiCYJdbv8qa4Vw2M+dYuJsXAt9C0AXMrtJgBVUzznYeVfh5SyIVKFadVv3m0BAHzhkhKYTELdYojoYy5cmI4NJZkYHPPhz/va1S4npsIFegaA3gn3syceVAK8SQjRN+l5hnSkYwB7mnuRnGDGbRt4mT+RVoW6Qx97tyWupjDOa1BUCJGBYAv+IQCPCiEMPeXjt0rrfPOGIm4vR6Rhn7qwAHmpNhzvGsK7cTSFMVyguwBkKbczAEz+zlQDeEhK+QiALwHYPPkLCCGqhRB1Qog6p9M533pV0z/qxTP7g6dvX+BgKJGmWc0m3KVsA/nY7hZVa4mlcIG+HUCo1e0AUAuMt8w/Qkq5A+f62yc+XiOlrJBSVuTm5s6zXPU8u78dbm8Aly3N5lRFIh34m43FMJsEdh7pQtegW+1yYmLGQA8NcgohqgC4Jgx67lSOPwKgWpm6WC2lrIlqtSqRUuKJPcFV3O6s5CJcRHqQl2bHtSvy4AtI7KhvU7ucmAi7otRUIS2l3DDh9iORLkprGtv7caRjAJlJVnxiVb7a5RDRLN25sRivHe7E9r2t+OpVSyCEsWem8UrRWQi1zj9bXgSbxaxyNUQ0W1ctz8OCdDtO9Yxgd5PxB0cZ6GEMj/nwnDIYemdlscrVENFcmE0Ct1cE/26f3GP8zS8Y6GG8eKADwx4/NpRkYll+qtrlENEc3VFRBCGAVw6eRd+wR+1yooqBHsYTe08DYOucSK+KMpNwxbJcePwBPG3wK0cZ6DM43jmIfaddSLFZcMOaBWqXQ0TnKdQg+2OdsbtdGOgzCK0DceOaBUhK4BZzRHp17co8ZCRZ8eHZQRw+M6B2OVHDQJ9GICDxrBLot65fqHI1RDQfNosZNypn2U/vM+6cdAb6NN5r7sGZfjcWZiSisjQr/CcQkabduj64oN4z+8/A5w+oXE10MNCn8eeGYOv8s+ULuUwukQGUL8pAaXYSnINj2GXQBbsY6FMY9fjxcmMHAHa3EBmFEGK8lf50gzG7XRjoU3jt8FkMe/xYV5wBBxfiIjKMUAPt1UOdGDLgbkYM9ClM7G4hIuNYlJ2EytJMjHr9eOXgWbXLiTgG+iTOwTG8fdwJi0ngxjWFapdDRBE23u1iwNkuDPRJXmrsQEACV5flIis5Qe1yiCjCbli9AFazwO6TPXAOjqldTkQx0Cd58UBwMJStcyJjSk+y4spluQhI4JWDHWqXE1EM9AnO9rux91QvEiwmVF3Adc+JjOrGtcGLjJ4/wEA3rBcbOyAlsKksFyk2XupPZFRVK/ORYDFhb0svOgeMsz0dA32CFw+cAcDuFiKjS7VbcfXyXEgZHDczCga6ot01iobTLtitJly7Mk/tcogoym5cG2y4vWCgbhcGuiLUOr92RT5XViSKA9euyIPdakL9qT6ccY2qXU5EMNAV52a3cN1zoniQbLPgmhXBs3GjdLsw0AGc7hnBB239SEowY9MKdrcQxYvQeJlRZrsw0AG8eih4CfC1K/Nht5pVroaIYmVTWR4SrWZ80OoyRLdL2EAXQmwWQlQJIbZOc7xcec7myJcXG6FAv34V554TxZPEBDOuXJ4DAHj9cKfK1czfjIEuhCgHACllLQBX6P4kD0gpdwBwTHNc05yDY6g/3YcEiwlXl7G7hSjeXL+qAMC5hp2ehWuhbwHgUm43AaiaeFBple8FACnlI1LKhohXGGW1RzohJXD50hxeTEQUh65dkQ+zSeD95l64RjxqlzMv4QI9A0DvhPvZk45XAshWul2m7JLRutD/yp/gpf5EcSk9yYqLHVnwByR2HulSu5x5icSgaE+oZT5VP7oQoloIUSeEqHM6nRF4ucgZdHvx7okemAS4dgtRHDNKt0u4QHcBCO2QnAFg8kZ8PQh2xYSeWzn5C0gpa6SUFVLKitzc3PnUGnFvHHXC4w+goiQLOSk2tcshIpVcpzTo3jruxKjHr3I15y9coG8H4FBuOwDUAoAQIkN5bMeE4xlQ+tP1Yry7hbNbiOLagvRErC1Kh9sbwFvHtdWTMBczBvqErpQqAK4Jg547leNNCM5+2QwgW5ntogtjPj/eOBr8wYVOt4gofn3CAN0uYad1SClrpnhswxTHdRPmAPDuyR4MjfmwckEairOS1C6HiFR2/aoC/PDVo9h5pAs+fwAWs/6uu9RfxRHyF2U0+zqurEhEAJbmpWBxTjL6R71oOO0K/wkaFJeBLqXEXz4MBvo1K9l/TkRBocW6QvmgN3EZ6Me7htDuGkVOSgLWLExXuxwi0ohQoP+Vga4fof99r1qeB5NJqFwNEWlFZWkWUmwWHO0cRLsOF+uK60C/hkvlEtEECRYTLl8aXKxLj90ucRfo/SNe1J/qg8UkcIWyyhoRUYieu13iLtDfOu6EPyBRWZqFNLtV7XKISGOuXhG8on3XiW7dXTUad4HO7hYimkleqh1ritIx5gtgd1O32uXMSVwFuj8g8cbRYKBzqzkims6mMn1OX4yrQN/f6kLfiBeLspKwJDdZ7XKISKPO9aM7IaVUuZrZi6tAf/NYcO2WTWW5EILTFYloaqsXpiMnJQHtrlGc6BpSu5xZi6tAf1tZRe2qMm0t40tE2mIyCVyxLJgTbx/XTz963AR6/4gXH7S6YDULXLR48sZLREQfdcWy4LTmt3W0nG7cBPquk90ISGBDSSaSuXcoEYURusDovaZejPn0MX0xbgI99L9s6DSKiGgmeWl2rChIxajXj/qWPrXLmZW4CHQpJd46FuwHu5KBTkSzdOXyYF68pZN+9LgI9ObuYbS7RpGZZMWqwjS1yyEindBbP3pcBHpolPryZblcXZGIZq2yNAs2iwmHzgyge2hM7XLCipNAD/WfczEuIpo9u9WMjYuzAATXdtE6wwe6xxfA7pM9ABjoRDR3oXG30Diclhk+0BtO92HY48eyvBQsSE9Uuxwi0pnQMttvH9f+MgBhA10IsVkIUSWE2BrmeTMeV8s74/3nbJ0T0dyV5aciL9WGrsExHOvU9jIAMwa6EKIcAKSUtQBcoftTPK8KwHWRL2/+djcFu1tCFwkQEc2FEAKXLgleXb77pLa7XcK10LcAcCm3mwBURbecyBoe8+GDVhfMJjE+sEFENFeXLgk2CN9VxuO0KlygZwDonXD/Y4ugCCHKlRa85uxt6YUvIHHhwnSkcnciIjpPlygt9Pebe+EPaLcfPRKDoppt+oZmt4ROl4iIzkdxVhKKMhPRP+rFkY4BtcuZVrhAd+FcYGcA+Mj5hpZb58C5/vNLHAx0IpqfUI7s1nC3S7hA3w7Aodx2AKgFACFERugxZRZMNYCsqQZNhRDVQog6IUSd0xm7y2f7R7w42N4Pq1mgojQzZq9LRMZ06dJgoL+r4YHRGQNdStkAjM9icYXuA9ipHN8hpdyhPJYxxZeAlLJGSlkhpazIzY3dwljvN/cgIIF1xRlISuByuUQ0P5c4ggOje5p74fUHVK5mamGTTkpZM8VjG6Z4zseep6bx7pYlnK5IRPNXkG6HIycZTd3DaGzvR/ki7Z35G/ZKUQ6IElGkXbJE2/3ohgz0nqExfHh2EDaLCesXTdkTREQ0Zwx0FbzXFJw6X1GaCZvFrHI1RGQUFyszXfa2aHNbOoMGOqcrElHk5aTYUJafijFfAPtPu8J/QowZMtD3NAdb6Bcx0Ikowi5yBC/N2dvSG+aZsWe4QHeNeHC0cxAJFhPWFKWrXQ4RGUxlaTDQ92hw42jDBfpe5Zu8rjiD/edEFHGhhf7qW3rh09h8dAMGevA0aGOpZpeYISIdy0+zoyQ7CcMeP450DKpdzkcYLtBD/edcLpeIomXjeLeLtvrRDRXoIx4fDrb3wySA8hLtXcVFRMZQqTQY9zRraz66oQJ932kXfAGJVYXpSLFx/RYiio5QC31vS5+m9hk1VKC/z+4WIoqBkuwk5KXa0DvswUmndvYZNVSg71UCvZIDokQURUKICd0u2pm+aJhA9/gC2Nca/MZWcv1zIoqyixZr7wIjwwR6Y3s/3N4AlualIDvFpnY5RGRw4xcYNTPQI258/jn7z4koBsryU5Fmt6DdNYq2vhG1ywFgoECvawn1n7O7hYiiz2QS4630+lPa6Ec3RKBLKdGgrHxWUcIWOhHFRuh6lwYGeuS09Iygd9iDnBQbijIT1S6HiOJEaBu6+tMM9IgJne5sKMmAEELlaogoXqwtTofZJHCkYxAjHp/a5Rgj0BtOhwKd/edEFDtJCRZcsCAN/oDEB639apdjkEBXWuha3IWbiIytXNm3uEED3S66D/RBtxdHOwdhNQtcuJAbWhBRbGlpYFT3gb6/1QUpgVWF6bBbuaEFEcVWqGeg4bT6C3WFDXQhxGYhRJUQYus0x6uVj4cjX154DaeC0xXZf05EaijKTEReqg19I140dw+rWsuMgS6EKAcAKWUtAFfo/oTjVQBqpZQ1ABzK/ZgKTRdi/zkRqUEIcW76osrdLuFa6FsAuJTbTQAmB7ZjwmNNyv2YCQQk9oUCvSQjli9NRDQu1EOg9sBouF0gMgBMXHkme+JBpWUeUg5ge4TqmpUTziEMun0oTLdjQTovKCIidYQalKEuYLVEZFBU6YppkFI2THGsWghRJ4SoczqdkXi5caHTG243R0RqWlWYjgSzCce6BjHg9qpWR7hAdwEILY6SAWC6DfSqpJT3TXVASlkjpayQUlbk5uaeZ5lT4/xzItICu9WMVQvTIGVwK0y1hAv07TjXL+4AUAsAQojxDmshRLWU8hHldkwHRfe3Br9x6xex/5yI1BWiQY5+AAAGX0lEQVRqWH7QqtFAD3WhKEHtmtClsnPC4w8LIU4KIWI6GjDo9uKEcwhWs8AFhWmxfGkioo9ZWxxsWKoZ6OEGRScPfIYe26D8WwtAlf6OxvZ+SAlcsCANNgsvKCIida0rUgK9zQUppSoLBer2StHQQjih/xWJiNRUnJWIzCQruoc8aHeNqlKDjgM9eFqztoiBTkTqE0JM6HZRZ+VF/QZ6mxLobKETkUasndDtogZdBnrngBsd/W6k2ixw5CSrXQ4REQBgndLA3K/SwKguAz30zVpTnA6TiTsUEZE2rCkKLuHd2NYPnz8Q89fXZaCz/5yItCg7xYbirESMev043jUU89fXZ6Cz/5yINGq8H12FbhfdBXogIHFAGUFex0AnIo0J5ZIaA6O6C/Sm7mEMjvlQkGZHfppd7XKIiD5i7fjAaOynLuou0Mf7z4u5fygRac+qwjSYTQLHOgcx4vHF9LX1F+jsPyciDUtKsGB5fir8AYlDZwZi+tr6C3TOcCEijVun9CDEemBUV4Hu9Qdw5OwgAODChexyISJtCuVTY3ts+9F1FejHO4fg8QVQkp2E9ESr2uUQEU1ptRLoBxno0wt9c9g6JyItKytIhdUs0NQ9jKGx2A2M6irQQ6cvqxnoRKRhNosZy/NTISVwOIYDowx0IqIoWK1CP7puAt3nD+BIR/B/ugsLGehEpG2hruFDDPSPO+EcwpgvgOKsRKQncUCUiLRNjZkuugn0xjZ2txCRfqwoSIXFJHDSORSzK0Z1E+ic4UJEemK3mrEsPxWBGA6M6ibQOSBKRHqzemEagNh1u+gi0P0BicMcECUinTl3gVFsWuiWcE8QQmwG4AJQLqV8ZK7HI+GkcwhubwALMxKRmZwQjZcgIoq4VTG+YnTGFroQohwApJS1AFyh+7M9HikcECUiPbpgQXAp3eNdgxj1+KP+euG6XLYg2PoGgCYAVXM8HhHj/edFDHQi0g+71YxleSnBgdGO6He7hAv0DAC9E+5nz/F4RBw6wxkuRKRP4xcYnYl+t0vUB0WFENVCiDohRJ3T6Zzz50spcapnBAC7XIhIf0K51dI9EvXXCjco6gKQpdzOANAzx+OQUtYAqAGAiooKOdcChRB474Fr0do3giwOiBKRztyyfiFuWLMAOSm2qL9WuBb6dgAO5bYDQC0ACCEyZjoeaSaTQEl2cjS+NBFRVKUnWmMS5kCYQJdSNgCAEKIKgCt0H8DOMMeJiCjGws5DV7pMJj+2YabjREQUe7q4UpSIiMJjoBMRGQQDnYjIIBjoREQGwUAnIjIIIeWcr/U5/xcTwgng1Hl+eg6A7giWowd8z/GB7zk+zOc9l0gpc8M9KaaBPh9CiDopZYXadcQS33N84HuOD7F4z+xyISIyCAY6EZFB6CnQ4/GKVL7n+MD3HB+i/p5104dOxjPb7QuFEFujtb0hUTQIIcqnW9sqmtt2arKFLoTYLISoEkJsPZ/jejSL91ytfDwc69qiYbbbFyoLv10Xy9qiZRY/43LlOZtjXVu0zOFvuTrWtUWL8jv7p2mORXXbTs0Fulb2MY2lWbznKgC1ykJoDuW+3sVk+0KtmOXv7QNSyh0I/ozj4fe6HECTcrzJCO8ZGH+/TdMcjurvveYCHRrZxzTGwr0nx4THmnBuDXo9C7t9oXLaGpU19lUw489YaZXvBQAp5SMGWYp6Nn+roTNOh0HeczhR3bZTi4GuiX1MY2zG9ySlrJmwTHE5gLpYFaayrPBP0Y1wv7eVALKVbhejdCWG+71uQLBl3jfpeXSetBjoNA3llLTBIC2ZGbcvNFjrfLZ6JmwaY5h+9OkoO5+5ADwE4FEhhBHOPMMJu23nfGgx0Oe9j6kOzfY9VUkp74tNSVEXbntDhzJgVg0gywD9q+F+xj041+/qQrDFrnfh3nM1gIeUmR5fAmDY/8RitW2nFgNdE/uYxli49wwhRHVoipMRBkVnsb3hDmWAEAiGgd6F+xnvmHA8A0p/us6F/b0OUX7WrsmP65FydlUx6SwrJtt2anIeutIqa0JwoKRGeaw+tPXdVMf1bqb3PGEaVC+CLZ7b47A7Qvdm+XvdC6DSKGdis3jPW5XjWUb5W1aTJgOdiIjmTotdLkREdB4Y6EREBsFAJyIyCAY6EZFBMNCJiAyCgU5EZBAMdCIig2CgExEZxP8HKdXFHlKQVDwAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "" ] }, "metadata": {}, @@ -125,17 +118,15 @@ } ], "source": [ - "\n", - "fig, ax = plt.subplots()\n", - "\n", - "plt.plot(x_grid, 0.5 * f(x_grid) + 0.5 * g(x_grid), label='$q$', lw=2)\n", + "plt.plot(x_grid, 0.5 * f(x_grid) + 0.5 * g(x_grid), \n", + " label='$q$', lw=2)\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -148,29 +139,35 @@ " F_b=2, \n", " G_a=2, \n", " G_b=4,\n", - " π_grid_size=20):\n", + " π_grid_size=20,\n", + " mc_size=10000):\n", "\n", " self.β, self.c = β, c\n", - " self.f, self.f_rvs = beta_function_factory(F_a, F_b)\n", - " self.g, self.g_rvs = beta_function_factory(G_a, G_b)\n", " \n", " self.π_grid = np.linspace(0, 1, π_grid_size)\n", - " " + " \n", + " self.w_f = np.random.beta(F_a, F_b, mc_size)\n", + " self.w_g = np.random.beta(G_a, G_b, mc_size)\n", + " \n", + " self.f = beta_function_factory(F_a, F_b)\n", + " self.g = beta_function_factory(G_a, G_b)\n", + " \n", + " self.mc_size = mc_size" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "def Q_factory(sp, mc_size=10000, seed=123):\n", + "def Q_factory(sp, seed=123):\n", "\n", " # == Simplify names == #\n", " β, c, π_grid = sp.β, sp.c, sp.π_grid\n", - " f, f_rvs = sp.f, sp.f_rvs\n", - " g, g_rvs = sp.g, sp.g_rvs\n", - "\n", + " w_f, w_g = sp.w_f, sp.w_g\n", + " f, g = sp.f, sp.g\n", + " mc_size = sp.mc_size\n", "\n", " @njit\n", " def κ(w, π):\n", @@ -182,74 +179,63 @@ " return new_π\n", " \n", " @njit\n", - " def Q(ψ):\n", - " \n", - " np.random.seed(seed)\n", - " U = np.random.uniform(0, 1, mc_size)\n", - "\n", - " \n", - " # == Turn ψ into a function == #\n", - " def ψ_f(x):\n", - " return interp1d(π_grid, ψ, x)\n", + " def Q(ω):\n", + " \n", + " # == Turn ω into a function == #\n", + " def ω_func(x):\n", + " return interp(π_grid, ω, x)\n", " \n", - " new_ψ = np.empty_like(ψ)\n", - " w_prime = np.empty(mc_size)\n", + " new_ω = np.empty_like(ω)\n", "\n", - " for i in range(len(π_grid)):\n", + " for i in prange(len(π_grid)):\n", " π = π_grid[i]\n", - " \n", - " # Generate draws from q_π\n", - " for m in range(mc_size):\n", - " if U[m] < π:\n", - " wp = f_rvs()\n", - " else:\n", - " wp = g_rvs()\n", - " w_prime[m] = wp\n", "\n", " # Evaluate expectation\n", - " integral = 0.0\n", - " for m, wp in enumerate(w_prime):\n", - " integral += max(wp, ψ_f(κ(wp, π)))\n", - " integral = integral / mc_size\n", + " integral_f, integral_g = 0.0, 0.0\n", + " for m in range(mc_size):\n", + " integral_f += max(w_f[m], ω_func(κ(w_f[m], π)))\n", + " integral_g += max(w_g[m], ω_func(κ(w_g[m], π)))\n", + " integral = (π * integral_f + (1 - π) * integral_g) / mc_size\n", "\n", - " # Update Qψ\n", - " new_ψ[i] = (1 - β) * c + β * integral\n", + " # Update Qω\n", + " new_ω[i] = (1 - β) * c + β * integral\n", "\n", - " return new_ψ\n", + " return new_ω\n", " \n", " return Q" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ + "\n", "def Q_iterator(sp, max_iter=500, tol=1e-4):\n", " \n", - " ψ_init = np.ones(len(sp.π_grid))\n", + " ω_init = np.ones(len(sp.π_grid))\n", " Q = Q_factory(sp)\n", - " ψ = ψ_init\n", + " ω = ω_init\n", " ϵ = tol + 1\n", " i = 0\n", " \n", " while i < max_iter and ϵ > tol:\n", - " new_ψ = Q(ψ)\n", - " ϵ = np.max(np.abs(ψ - new_ψ))\n", - " ψ = new_ψ\n", + " new_ω = Q(ω)\n", + " ϵ = np.max(np.abs(ω - new_ω))\n", + " ω = new_ω\n", " i += 1\n", " \n", " if i == max_iter:\n", " print(\"Warning: hit maximum iterations\")\n", " \n", " \n", - " return ψ" + " return ω" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -258,43 +244,43 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 3.02 s, sys: 6.67 ms, total: 3.03 s\n", - "Wall time: 3.03 s\n" + "CPU times: user 1.75 s, sys: 9.65 ms, total: 1.76 s\n", + "Wall time: 1.76 s\n" ] } ], "source": [ "%%time\n", - "ψ_1 = Q_iterator(sp1)\n" + "ω_1 = Q_iterator(sp1)" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "sp2 = SearchProblem(c=0.2)\n", - "ψ_2 = Q_iterator(sp2)" + "ω_2 = Q_iterator(sp2)" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3ddzHHeW6PnvDx4gCG8IQweA3oOgWi1vQHl1y5Dqnrlj9mGbnNiX3Yi7V+yZf0AtTtyHid2HFftuxE7fmekRSUmtlhch25LaEASN6A0okjCEL4DwZc4+/LJACAKJBFEJoKrOJ6KjkVWZlb8SpDz4uXOMiKCUUkpNlDDXDVBKKTU/aYBQSik1KQ0QSimlJqUBQiml1KQ0QCillJqUBgillFKT0gChlFJqUhoglFJKTUoDhFJKqUklzXUDZqKgoECWLVs2181QSqmocuTIkU4RKZzqvKgOEMuWLaO+vn6um6GUUlHFGHPFzXk6xKSUUmpSGiCUUkpNSgOEUkqpSWmAUEopNSkNEEoppSYV1auYptLX10d7ezt+v3+umxKzkpOTKSoqIisra66bopSKsJgNEH19fbS1tVFWVkZ6ejrGmLluUswREYaGhmhubgbQIKHULGnxDbEoK42EBG+fazE7xNTe3k5ZWRkZGRkaHDxijCEjI4OysjLa29vnujlKxTx/MMSHJ1v5vz+7yFcXOz2/X8z2IPx+P+np6XPdjLiQnp6uw3hKeazZN8SB+mu09Y1gDIwGQp7fM2YDBKA9h1mi/5yV8k4wJHx+rp1Pz7YTEijMTGHH1sUsyc/w/N4xHSCUUiqatfcNc+BIE009QwDcU5nP4+sWkZI0O7MDGiDiTGNjIwcPHqS6upqGhgZ27dpFTk7OpOc2NDRQV1cHwOHDh/n1r399y3OVUpETCglfX+rk41NtBEJCbkYyL24tp7Iwc1bboQEizuzevZtDhw4BUFFRwZ49e3jttdd+cJ7P56O+vp6XX34ZgIMHD/Loo49y5MiRWW2vUvGmq3+ENxqauNw5CEDN0lye3lhCWnLirLclZlcxqR9qbGyku7t77LiiooL9+/dPem59fT2vvvrq2HFtbS0NDQ34fD7P26lUPBIR/tzYxf/16UUudw6yMC2Jv79nKS9uLZ+T4ADag4grDQ0N5OXl/eD1xsZGKioqvvdabW0tBw4c+N45gA4xKeWB3kE/bzQ0caG9H4BN5dn8ZHMpGSlz+4iOqwDxj29+Oyf3feWFDdM6/+DBg3R3d489tGtrayPSju7u7h884PPy8m7ZK6iurh77+fXXXx8bblJKRYaIcPSaj3eOtzDsD5GRkshzm8vYUJ491YUwC6sH4ypARIO9e/eSk5PDrl27aGho4JVXXvlBgPD5fLzyyiu3/ZzKykp27doVkTb5fD4aGhrG5i6UUjPXPxLgd0ebOdXSB8CakoU8v6WMhWnJU1zYDsf+HTbshOxyT9sYVwFiun/Jz7bGxkZeeeUVenp6APsX/PhhnrCcnJzvzQ+4NVlvYbJexUR79uzR4KBUBJ1s7uV3R5sZGA2SmpTAs5tKqF6SO/WeomuH4dsDEByBs+/Bj3Z72k5PA4QxZgfgA6pFZO+E96qBA877AHUisscY0wM0ho+9bN9809DQwEsvvTTleXfag6iurv7eJHXYxPmH8fbu3TsWjHw+n85BKDUD/SMB3jnewommXgAqCxewY2s5ORkpt7/QP2wDQ7NTYrm0GjZO/ayYKc8ChBMcEJE6Y0yFMaZWROrGnZInIpXOudXcDBQ7J5wXVyY+gBsaGr43FxA+5056EBMDQWNj4/cCUmNjI3l5eWNtOHjwIDt27Bg73r9/f8SGrZSKJ+G5hvdOtDI4GiQl0fDE+hLursibutfguwoNv4GBDkhMgfU7YPFdUT8HsQ143fm5EagGxh78E4JAhYgcdH7OMcZUiEjjZB9qjNkF7AJYsmRJxBs9l3bs2MHhw4fHNqdB5Caoww4cOMDevXupqKjg8OHD39sDsWfPHrZv386uXbtobGxk586d37u2oqJCA4RS09QzMMrvjjVzvs2uUKoqyuT5LWXkLZii1yACjZ/DmXdAgpBVBtV/DwuLvW+0w4iINx9szGvAayLSYIypBbZPNmRkjNklIvvGHwP7gVdF5LYDbDU1NVJfXz/pe2fOnGHNmjUz+g7KPf3nrdT3iQh/bOzi41NtjARCpCcn8vTGEqqX5Ezdaxi5Acf+A9pP2+Nl98Pan0LiFBPYLhljjohIzVTnedmD8AE/XHT/Q9uBsQARDhbGGJ8xZse4noVSSkWF9r5h3jzazJUuuxt6fVkWP9lUOvUKJYCO83D0NzZIJC+AzX8Fi+ZmgY2XAeIwEB5QrwB+sAzGGJMz4XgX0O0EhS4P26aUUhEXDAlfnu/g07PtBELCwrQkfrKplPVlU+xrAAgF4dwHcLEOEMirhOq/hfRcz9t9K54FCBE5aIx52RleGptzMMYcEpHtzml5wPhlNfuBmnHXaO9BKRUVmnoGebOhmdbeYcDmUHpqQwnpKS7SZAx2Q8O/Qs93gIGVT8KKxyBhbrMhebrMdeLSVue17eN+bgR2jzv2cXMiO25XMimlosdoIMQnZ9r4w8VORCBvQTLPbymnqshl5tWWo3D8dQgMQVoOVP8d5Fd622iX4mqjnFJKRdKljn7eamima2AUY+C+qgJq1xaRmuSi1xAYhVNvwdVv7HHxetj815CywNtGT4MGCKWUmqah0SAfnmrlL5dt1oPirFRerC5ncZ7LKm99LXDkX6H/OiQkwdrnYNl9s7K3YTo0QCil1DScvd7HW0eb6RsKkJgAj6wu4oEVhSQlupgvEIHLX9q9DSE/ZBbbvQ3ZZd43/A5ogFBKKReG/UHeO9FK/RXba1iSl8EL1WUUZ6W5+4DBbjj+W+g8b48X3w3rX4CkVI9aPHMaIJRSagoX2/t5o6EJ36CfpATDY+uKubeygIQEF0NCItB0GE6+AYFhSMm0eZRKNnnf8BnSABFnplOTGqCuro49e/ZoqVEVl0YDIT48dZ0/XrLbsspz09mxtdx9r2HkBpx4Ha47tWiK18Omn0PqQo9aHFkaIOKM25rUYINDXl4eDQ0Ns9lEpeaFq12DHDhyjc7+URKMnWt4aFURiW56DQCtJ2xwGO2HpDRY/yKUb5t3E9G3owEijtyqJvWtAkSkEwUqFQ0CwRCfnG3ni/MdiNgVSju2llOe63KFkn8ITr4JTX+xxwUrYdNfQYabzEPziwaIODKdmtRKxaPW3iEO1DfR2juMMfDgygIeXVNMspsVSmDzKB37dxj2QUIyrHkWlj8QVb2G8eIrQLzzv8/NfZ/9l2mdPl9qUisVL0Ih4YvzHXxyto1gCPIXpLCzppyl+S43rQVG4ew7dgkrQM4S2Pw3s5qa2wvxFSCiwHysSa1ULGu/McyB+iaaeoYAuLsijyfWL3K3Gxqg5woc/TcYaAeTACufgKrtc55HKRLiK0BM8y/52TZfa1IrFYtEhG8udfHRqev4g0J2ejI7tpZRVeRyhVEoCOc/gouHQEKQuQi2/A3kLPa24bMovgLEPDcfa1IrFYu6B0Z540gTjZ0DAFQvyeGZjaXuMq8C9LXCsX+D3ibAQMXDsPrpiBX0mS80QMwz86kmtVKxJhQS/ny5m49OXWckECIzNZHnt5SztjTL3QeIwOUvnFQZAUjPs72GeZJ9NdI0QMwj86kmNdh9EOE9E+H3dOmrilatvUO8dbSZa912rmF9WRbPbS5jQarLx+DEMqCL74Z1z0Oyy01zUcizmtSzQWtSzx/6z1vNVyOBIJ+eaeeri52EBLLSk3h2YynrSrOmrg0d1n7GLl8NlwHd9LOoSJVxK/OhJrVSSs2p8203+N3RZnoG/RgDP67M57G1xaQlu5xrCAbs8tXGz+1xfpUdUprDMqCzSQOEUirm3Bj28+6JVk409QJQkp3G81vK3NdrALjRBg2/gb4mu3x11dNQ+UhMLF91SwOEUipmiAiHv+vhw5PXGfIHSU401K4p5t6qAvc5lETg6h9tuoyQHzIKbBnQ3KXeNn4e0gChlIoJbX3DvHW0mStdgwCsKs7kp5vLyF2Q4v5DRgfg+H/C9RP2uHwbrN8R0xPRtxPTAUJE3E9CqTsWzQsdVPTzB0N8eradL893EBJYmJbEMxtL2FCWPb3//jsvwtHfwHCvzb664SUo3+pdw6NAzAaI5ORkhoaGyMiYxpijuiNDQ0MkJ8fWBiEVHS623+DtYy109o8C8KPleTy+bpH7DW/g7Ij+EC4cAgRyl8GWv4MF+Z60OZrEbIAoKiqiubmZsrIy0tPTtSfhARFhaGiI5uZmioujOymZii79IwHeP9HK0Ws2dUxxVirPbylzn1wvbKALGv4VfFcAAyset7mU4mgi+nZiNkBkZdmdkS0tLfj9/jluTexKTk6muLh47J+3Ul4SERqu9vD+t9cZHLWT0A+vLuL+qgKS3KbkDmuqh28P2DKgaTl2IjpGd0TfqZgNEGCDhD64lIoNXf0jvHW0mUsdNn9SVVEmP91cSkFm6vQ+yD8E3x6EZmeTbckm2PhzSNHh6IliOkAopaJfMCR8dbGTT8604Q8KGSmJPL2xhC2Lc6Y/dNx2ypYBHe6FxBRbBnTxj6K2oI/XNEAopeatpp5B3mpopqV3GIAti3N4amMJmW7zJ4WNDsCpt6DpsD2OkYI+XtMAoZSad0YCQepOt/P1pU5EIDcjmee2lLGy2GWthvFaj9u5hpEbtgzo6qdh+YM6Ee2CpwHCGLMD8AHVIrJ3wnvVwAHnfYA6Edlzu2uUUrHvQtsN3hqXP+m+qgJq1xa5r/AWNnIDTr4BLUftcV4lbPoryCyMfKNjlGcBwnnQIyJ1xpgKY0ytiNSNOyVPRCqdc6sBn4trlFIxamAkwHvjlq6WZqfxfHUZ5bnTnDwWgZYG+PYN8A9AYiqseRaW3adzDdPkZQ9iG/C683MjUA2MPewnPPgrROSgMWb37a5RSsUeEeHYNR/vnmgdW7r66Jpi7ptO/qSwIZ8dTmo7aY8LVsGmn0NGXuQbHge8DBATy5JNui3RGLNLRPa5vcYYswvYBbBkyZKZtlEpNYe6B0Z5+1gz59v6AagsXMBzW8qmv3RVBK79xU5EB4Zsqox1z+sKpRnyMkD4ADdhezsQDhBTXuMEk31gCwbNpIFKqbkRCgnfXOri0OnrjAaF9OREnt64iOoludNfujrYbZeudpy1x0XrYOPOuKnZ4CUvA8RhbvYIKoBDE08wxkzsMUx5jVIqul3vHeaNhiaaemzpz03l2Ty9sYSFadPM5yUCV76G07+H4Iit9Lb+BSjbqr2GCPEsQDhzCi8bY2qd4zoAY8whEdnunJYHdE91jVIq+okIX1/s4qNT1wmEhOz0ZJ7bUsrqRXeQ7WCgE47/Frou2uOSTTYtd5pmToikmK1JrZSaP3oH/Rw4cm0sTcZdy3N5cn2J+9KfYSJw+Qs4864t5pOSCRt2QulmD1oduyJak9oYk43ds1ADXAR2A78EfiEifTNpqFIqth275uPtY80M+0NkpibyQnU5a0rupNfQBcf+Hbov2eOyrbDuBUjNjGyD1Ri3Q0z7gCMi8pgxpl5EjhpjvsMGjcc9a51SKmoNjQZ5+1gzx5260GtKFvJCdfn002SIwHdfwZl37FxDSqZdurpogwetVuO5/U3Vikh4yakAOLueu7xpllIqml1s7+fgkSZ6h/ykJiXw1IYSti27wxVKx38LneftcWm1TbCnvYZZ4TZA9BhjNonI8fALxpgtQI83zVJKRSN/MMTHp9r46mInAIvz0nmpZvGd7Wu4+kc49bubvQada5h1bgPEPwCfGWMOA5XGmNeBWmCnZy1TSkWV1t4hXj98jba+ERIMPLK6iIdXFZEw7d3QPXD8P2/uayjZZIND6h0k6lMz4ipAhHMjYQNCHXZD2y4R6fWycUqp+U9E+MOFTg6dbiMQEgoyU3ipZjGL8+4gh9K1v8CpN22Vt+QFsOFFO6yk+xrmhOvZIhHxAb/2sC1KqSjjGxzlQH0TjZ12+erdFXk8sX7R9DOvDvnsbuj20/a4eD1s/Jnua5hjbpe57geWT/JWN9AgIv8Y0VYppea1cIK93x9vYdgfYmFaEi9Wl7Nq0TSHgUSg+YhNy+0fhOQMOwmtu6HnBbc9iEPYvQ+vYLOsVmL3QRwCCowxr4vIz7xpolJqPhkYCfD74y2ccJavri1ZyPN3snx1uM/2GsKZV4vW2l5D+sQMPGquuP2NviwiK8YdHwUOGmMuiMgKY8wFD9qmlJpHgiHhz41d1J1pZ8gfJDUpgWc2lrB16TSXr06s15CUZje8Lb5Lew3zjNsAkW+MWSoiV8IvGGOyuJl5ddJU3kqp2HCx/QbvHG+l/cYIAFVFmTy3uZT86S5f9Q/Dt/vtsBJA4Wq76U0zr85LbgPEL4GjxpjXgEtAFfAL4FfGmP8G7PeofUqpOdTZP8IH37ZyuvUGAPkLUnhqQwlrShZOf9Ob7yo0/AYGOmyVt3XPwZIfa69hHnO7zHWfMaYOW6inBrvMtdZJubFFRP7Zy0YqpWbXsD/I5+fa+fpiF4GQkJqUwMOri7i3Mp+kxITpfVg4wd7p34MEIasMtv4vkFnkSdtV5ExnmWsjticxxhjziIh8GvFWKaXmhIjQcLWHj061cWM4AMDWpbk8tq6YrOnWawAYHYBj/3FzInrZ/bD2p5B4B5+lZp3bZa7LsKuYxi8vyMPuptb5B6ViwNWuQd450TJWyGdJXgbPbCyZ/oa3sK5L0PCvMNxrl69u+rndFa2ihtsexAHAmVViOXAQGzD2eNEopdTs6R3y89HJ6xy95gMgKz2JJ9YtYvPinOnPMwCEQnDhYzj/ISCQuxyq/w4y3FQgVvOJ2wBRLSLbnBKhr4vIr40xB7D7IP6Hd81TSnnFHwzx1cVOvjjXwUggRFKC4f4VBTy4qnD6O6HDhnxw9H86ld4MVG2HVU9BwjTnLdS84DZA9IaXuRpjKo0xC0XEZ4yp9LR1SqmIExFOtfTx/ret9Az6AVhXmsVTG0rIW5By5x/cdtoW9Bntt4n1tvwtFK6KUKvVXHAbIH4FNBpjcoE3gE+NMd2A1vtUKop0D4zy9rFmzrf1A1CclcozG0upKppBfYVgAM6+C42f2ePC1bD5v2gepRjgdpnrXmPMAae86B5jzA7sXMQ+T1unlIqIYEj46mInn5xpwx8U0pMT2b62mB8tz5t+Ou7xBrqg4f+zexxMAqx+Giof1b0NMcLtKqbvLWcVkYPeNUkpFUnXugd562gzrb3DAGxenM3TG0unnztpouYGm0spMAzpeXYiOm+ynJ4qWrmuSW2MWQ40AK8DdSJyzLtmKaVmatgf5OPTbfypsQsRyFuQzE83l7GyeIaFdwKjcOotuPqNPV60ETb9FaTc4XJYNW+5HWKqAjDGPApsB141xtQAh0XkCQ/bp5S6Ayebe3nnRAt9QwESDDywsoBHVheTkjSD1UQidsPbyTdhqBsSkmDd87D0Xh1SilGu+5jOZrnl2M1ylYABtKKcUvNI76Cf3x9vHsudVJ6bzgvVZZRkp8/sgwe6bM2G9lP2OKvMTkRnl82wxWo+czsH0Q1kYyelPwb2aLlRpeaPUEj4U2MXH59uYyQQIjUpgcfWFXP38vyZTUIH/XDpU7hwCEJ+m5p71VM2ZYbubYh501nmuh34GVABbDPGfAwccVY2KaXmSItviLeONo+lyFhXmsWzm0rJTp9hvqP2M7bXMNBhj8tqYO1PIC17hi1W0cL1MldgL4AzWb0b+AQQ4A63XCqlZmIkEOTTM+18dbGTkNgUGT/dVMba0hnuPxjqsZPQrcftceYi2LATCqpm3mgVVVwvc8X2IKqx6b4vYwPGIe+appS6lfNtN/jd0WZ6Bv0YA/dU5rN9bTFpyTP4ey0UhMbP4fxHEByBxBRY+TgsfwgSZ7gkVkUlt7/1vUAdsFdEPnH74c6GOh82l9PeSd6vxg5Zje2tMMb0YOte14mIJgNUapyh0SDvnGjh6FWbWK8kO43nt5TdecbVsM6LcPIg3Gi1xyWb7AolrfQW19wOMdVM94Od4ICI1BljKowxtSJSN+G03SKy2xjzsjGmwqk5sXOS85SKe+fbbvBGQxN9QwGSEw21a4q5r6pgZpPQw31w+m1odrLmZBTAhh1QtCYyjVZRzct+4zbspjqwPYJqbC8EAGPMLuCIExjG9y5yxgULpeLesD/Ihyev8+fL3YCt07BjazmFC6dZD3q8UAiufAVn37M7oROSbObVqke1mI8a42WAyJlwPLGwUDgT7H6n1vUeEfFhCxF1G2NeE5HdEz/UCSy7AJYsWRLhJis1vzR29PNGQxPdA36SEgy1a4u5f6a9Bt9VOP469DXZ46K1sP5FWFAQmUarmOF2knoz8Cr24f09IrLtFpeFH/a3c8lJG34E+9DfKyL7nHv6jDE7JuZ9ct7fB1BTUyNu2q9UtPEHQ3x06jrfXLJpMkqz09hZs5hF2Wl3/qFBP5z7wO5rQOz8wroXYNEG3QmtJjWdinJvcHPIyI3D3OxFVPDDFU+HuRlAcgCf0zvodoJC1zTupVTMuNY9yIH6a3T0j5Jg4JHVRTy0qpCkxBlsTOtuhGO/hYF2wEDFQ3bDW9IMhqlUzHMbIIyI/HI6HywiB53J51rnuA7AGHNIRLZP8v4+p2JdzbjXNGusihuBYIhPzrbzxfkORKBoYSo7a8opz53BCqXAiJ1nuPwlIHZPw6afa9ZV5YoRmXqUxhjzK+CCiPy/3jfJvZqaGqmv15pFKvq19g5xoL6J1t5hjIH7qwqoXVtM8kx6DZ0X4PhvYbDL1mqofNTua9BJ6LhnjDniZnWq65rUwMvGmL1Ad/gegIjIijtso1JxLxQSvjjfwSdn2wiGIH9BCju2lrOsYMGdf6h/GM78Hq58bY+zymw67pzFkWm0ihtuA8QPVhMppWam/cYwB+qbxnIo3V2RxxPrF5GaNIPd0O1nbBGfoR4wibDiMaiq1Z3Q6o643Sh32euGKBUvRISvL3bx8enr+INCdnoyO7aWUVU0g0I+o4Nw+ndw7c/2OHsxbP5ryCqNTKNVXJpOPYj/B3gJm/bbB+zH7l3QbK5KudTeN8ybR5u50jUIwNaluTyzsWRmOZSufwsn9sNIn93wtupJqHhE03GrGXO7D+J17JzDVhG57Kw2+hXwa2wKcKXUbQSCIb680MFnZzsIhISFaUk8t3mGmVdH+uHUm9B8xB7nLoNNfw0LiyPSZqXc9iBqRWRsJ7Sz4/kfjDG6V0GpKVzrHuSNhiba+kYA2LYslyfXl5CeMoNeQ8tR+PYgjPZDQjKseQaWPaC9BhVRbgNEjzFmqYhcCb/glCDt8aJRSsWCkUCQQ6fbxnZD5y9I4fnqMioLM+/8Q0cH4dv9NkAA5FfZFUqaJkN5wG2A+CVw1BlqugRUATuBX3jVMKWi2fh6DQkGHlhZwKNrZrqv4SIc/Z8w7IPEVFj7U1h6j6bJUJ5xu4rpoDGmAXgRKMAGiRpd3aTU9w2OBnj3ROtYvYbS7DRe2FpOWU76nX9oMADnP4CLThHHnCWw5e8gszAyjVbqFlyvYnLSb/+zh21RKmqJCCeaenn3RAv9I0GSEw2POvUaEmeSebW/HRp+A73XAAMrHre7oRO00q/y3m0DhDHmMHYYaRt2s9wP8nLcJpurUnGhd9DP28ebOdN6A4CKggU8X11GQeYMEuGJwNU/2trQwVFIz4MtfwP5lVNfq1SETNWD2CUix4wxl4HJkh5pum0Vt0SEPzV289Gp64wEQqQlJ/DUhhJqluZiZjIvMNJvcyi1nbTHZTW2ylvyDIaplLoDtw0QIuIslaBusp6CMeYCoLmYVNyZuOFtXWkWz24qJTt9honw2s/CsX+DkRuQlAYbXoLyrRFosVLTN9UQ08dArfNzcJJTPvGiUUrNVyOBIF+c6+APFzrHNrz9ZFMp68uyZ/bBQT+ceQcuf2GP8yrtkFLGVDW3lPLOVD2IxwCMMftF5KXZaZJS84+I0HC1h49OtXFjOABEaMMbQF+rnYi+0WLTcq96yqbm1k1vao65XeY6aXAwxjwiIp9GtklKzS+NHf28d6KVlt5hAMpz03lmYwlL82eQkhvsRPTlL21q7lAAFhTClr+F3KURaLVSM+c2F9My7CqmnHEv52GHn/InuUSpqNfVP8IHJ69zqsXmo8xOT+bxdcVsXpwzs0logOE+OPYf0HHGHi++G9a/oCVA1bwynZrUTkYwlgMHsQFjjxeNUmouDfuDfHa2nW8udREICSmJhgdXFXJfVSEpSREY9mk9YWs2jPZD8gLY9DMo2TTzz1UqwlxXlBORbU4W19dF5NfGmAPAIeB/eNc8pWZPKCQc/q6bujNt9I/YNRnVS3J4bN2ima9OAhgdgJNvQrOzYrxgJWz+L5Cec/vrlJojbgNEbzhZnzGm0hizUER8xhjdtaNiwoW2G7z3betYxtXlBRk8taGE8tyMyNzg+kk48Z92+Wo4++ryBzWPkprX3AaIV4BGY0wu8AbwqTGmm8k3zykVNdpvDPP+iVbOtfUDkLcgmSfXl7CuNGvm8wxgs6+eehOaDtvj3OW216B5lFQUcBsgKoG/d6rH7THGvAhUAPs8a5lSHhocDVB3pp0/N3YREkhNSuDh1UXcU5k/s4yr47Wdtr2G4V7ba1j9tO016PJVFSXcBggf8H8YY/4FW2r0NRF5w7tmKeWNYEj4c2MXdWfaGfIHMQbuWp5L7ZpiFqZFYJ4BwD9kcyiF60PnLnN6DUWR+XylZonbfRC/BHAmqXcCe40xy4EDIvJPHrZPqYi52H6Dd4630n7DzjNUFWXy9IYSFmWnRe4m7Wfg+H/amg0JSXbTW8XD2mtQUcl1um+wpUadDK+V2CGmnYAGCDWvdQ+M8v63rWP7GfIXpPDUhhLWlCyMzDwDgH8YTr8NV7+xxzlLbK9h4aLIfL5Sc8DtRrn/FXgMuzHuEvA6sF0LBqn5bGLepNSkBB5aVch9VQUkRWqeAaDjnM2+OtRjew0rn4TKR7TXoKKe2x7ES9jNcr8QkV4P26PUjIUBhknOAAAX1ElEQVSL93xw8jq9Q34AtizO4fH1EdrPEOYftmkyrnxtj7MX215DVknk7qHUHHIbIPJE5NeetkSpCGjxDfHuiRYud9o03BHLmzRR5wWbKmOoG0wirHpSE+ypmOM2QNQZY/6riPx3T1uj1B0aGAlw6HQbf/muGxHITE3ksXWL2Lokl4SZlPycaKQfzr5rq70BZJXD5r+G7LLI3UOpecJ1qg2gxhjzT0A3dtmrAeR2JUeNMTucc6tFZO8k71djJ7sRkYNurlFqvFBI+NPlLupO22WrCQburSrgkdVFM0/D/f0b2aGkc++Df9Cm5V7xOKzYrvWhVcxyGyB2T/eDnQc9IlJnjKkwxtSKSN3EzxWR3caYl40xFdhANNU1SgFwsb2fd0+0jKXHWFGUyTMbSyjKiuCyVYDuRvj2DehrsscFq2D9i7CwOLL3UWqecbsP4k5WK23DrnYCaMQ+/Mce9saYXcARY0xFuKdgjNl9u2uUAugZGOW9cctW8xYk8/SG0sguWwW7A/rMOzfTZKTnwrrnYdFGzaGk4oLbZa7Z2FVMNcBFbI/il9hVTX23uGxiisqJdSPCif72G2New6YOn+qacGDZBbBkyRI3zVcxYjQQ4svzHXx5oQN/0Kbhfmh1EfdVFUQuPQZAKGgL+Zz/EALDdulq5aNQVQtJKZG7j1LznNshpn3AERF5zBhTLyJHjTHfYYPG47e4xoctKnQ7l5zNd0ewD/0prxGRfU57qKmpEZftV1FMRDjV0sd737biG7TLVjcvzuaJ9SWRXbYK0HEeTr4B/dftcfF622tYUBDZ+ygVBdwGiFoRCf81LwAisscY03Wbaw5zs0dQga0dMfH9cDDIwQaHximuUXGmrW+Yd463cKljAIDS7DSe3VTKsoIIL1sd6rE7oVuO2uOMAlvhrXhdZO+jVBRxGyB6jDGbROR4+AVjzBag51YXiMhBZ/K51jmuc647JCLbJ3l/n/P+D65R8WdoNEjdmTb+5GRbzUhJ5LG1xWxblhfZZavBADR+Bhc+huCozbq68nGoeAgSI9w7USrKGJGpR2mcB/Z+7F/927B/2dcCO0XkU09beBs1NTVSX68lKWJJKCQcudrDRyevMzBqs63+aHke29cWk5EyrdRhU2s7bWs1DHTY45JNsPY5yJhqZFSp6GaMOSIiNVOd53YVU52zDHUndlWRD9ilaTdUJF3tGuSdEy009QwBtqrbs5tKKclOj+yNBrpsYGg7aY8zi+2y1cJVkb2PUlFuOn+ShcLpNowxjwCPAm960ioVV/qG/Xx48jpHr/oAyEpP4qn1JWwsz47sstWgHy7W2f+FApCYCquegGUPQGKEeydKxQC3y1z/G/ArINEY838C/+C8Xisi/5uH7VMxLBAM8c2lLj49285IIERSguH+FQU8uKqQ1KQI7k4Wsb2FU2/BoLOuoqwG1v4E0rIjdx+lYozbP5t+CVQ5P/8jsBU7zHQJ0AChpu182w3ePd5CR/8oAGtLFvLUhhLyM1Mje6P+Djuc1H7aHi8shQ07IL/y9tcppVwHCCMil8Mrl0TkOwAT0f6/igdNPYMcOt3G+bZ+AAozU3hmUykrixdG9kaBUbh4CC59aoeTktJsdbdl92vGVaVcchsgDjiV5HKAX43bWa1LiJQr7X3DHDrTxslmu/E+NSmBR1YXcU9lfmSL94jA9RN2OGnIWYVdfheseRbSsiJ3H6XigNtVTLuNMS86P7/hBIhDIvLPnrZORb3ugVE+OdPG0Ws+RCA50fDjinweWFnIgtQITwz3t9td0B1n7XFWOWx4EfIqInsfpeKE6/9CReSNcT/3Ahoc1C31Dvn5/Fw7h7/rJhiCBAM/qsjjoVVFkU+PERixG90ufQYShOQMO5y09F4dTlJqBrxM1qfi0OBogC/OdfDHxi78QcEY2LIkh9o1xeQtiHCiOxGbGuP02zBsl8iy+G5Y8wykRnhOQ6k45GWyPhVHhv1Bvr7YyR8udDISCAGwviyL7WuKI1+fAeDGdTuc1HneHmcvtquTcpdF/l5KxSkvk/WpODAaCPGnxi6+ON/B4GgQgJXFmWxfW0x5bkbkb+gfhgsfQePnICFIXgCrn4YlP9bhJKUizLNkfSq2BYIh6q/08NnZdvqGAwAsy8/gsXWLWB7pTKvgDCc1OMNJvYCBJffY4aQUD+6nlHIdIP4B+MxZ6lppjHkdJ1mfZy1T85KIcOyaj7ozbXQP2NoMZTlpPLZuESuKMiObGiOsrxVOHoSui/Y4Zwls2Gn/XynlGU3Wp1y70HaDD09ep6V3GIDChak8traYdaVZ3gQG/xCc+wC++8PN4aQ1z8KSu7Xkp1KzwO0qpsMisg34tcftUfNQi2+ID05e52K73f2cnZ7M9rVFbFmcG9naDGEi0FQPZ96GkRuAsTugVz2pw0lKzSK3Q0yfGGP+q4j8d09bo+aVnoFRDp22m9wA0pITeGiV3f0c0RrQ4/U22+Gk7kZ7nLvMDidll3tzP6XULbkNENVAjTHmn4Bu7BCTAcTpWagYMjga4LOzHfypsYtASEhKMNxdkc/DqwsjX7QnbHQQzr0P330FCKRkwpqfwOK7dDhJqTni9r/23Z62Qs0Lfif99ufn2hn2270MWxbnsH1tMbmR3uQWJgLX/gJnfg+j/YCB5Q/AyichxYNlskop19xOUl/2uiFq7oRCwtFrPRw63U7vkF2ZVFWUyZPrF1GaE+FqbuP5rtnhpJ7v7HFeBazfAdll3t1TKeWaltGKYyLC+bZ+PjjZSlvfCACl2Wk8uWERVUUepqoYHYCz78OVrwGxaTHWPgdlW3U4Sal5RANEnLrWPciHJ6/T2DkAQG5GMtvXFrN5cY43S1bB7oJu/BwaP4PAMJgEWP6gHU5K9iAdh1JqRjRAxJlm3xCfnW3nVIvNsZiRksjDq4q4uyIvsnUZxguM2r0MFz8Bvw1IFKyCdc9DVok391RKzZgGiDhxpWuAz862c86p5JacaLinMp8HVxaRnhLB+s/jBQNw9Y82FfeIk/Q3dzmsfgYKqm5/rVJqzmmAiGEiwqWOAT4/186lDvuXe2pSAj9anse9KwrISotwXYawUAiaDsP5D2Go276WXQ6rnoaiNTrPoFSU0AARg8KTz5+ebedq9yBgA8M9lfncW1UQ+UpuN29s6zOc+wAG2u1rmYvsDuiSTRoYlIoyGiBiiIhwqqWPz862j+VLykhJ5L6qAu6uyPduKEkE2k7ZjW59zfa1jHw7+Vy2VdNwKxWlNEDEgFBION7k4/NzHbTfsMtVF6Ylcf+KAu5ankdqkkeBAaDjPJx77+ZehrRsWPG4TaiX4OF9lVKe0wARxQLBEMeu2cDQNTAK2ER6D64spGZZrnf5kgC6L8PZ96Drgj1OyYSqWlh2HyR6NLehlJpVngYIY8wObN6mahHZO8n7PUAjUCcie271mvo+fzBE/Xc9fHG+Y2znc/6CFB5aVcjmxTneLVcFuNFm02K0nbTHSelQ+QhUPAhJqd7dVyk16zwLEE5wGKslYYypFZG6CaftdPmawg4lNVztoe7MzZQYRQtTeXh1ERvLsr1JvR023GdXJV39o63NkJhqcyZVPqI5k5SKUV72ILYBrzs/N2Izwk588OcYYypEpHGK1+KaiHCm9QYfnbo+NsdQkp3GI6uLvCvWExYYtbufL9ZBcISxUp+rnoS0LO/uq5Sac14GiJwJx/mTnJMHdBtjXhOR3bd5bYwxZhewC2DJktgvOXm5c4CPTl3nSpddrpq3IJnaNR6nxICbexnOvefUgAaK19uKbgsXeXdfpdS84WWA8GEf9rckIvsAjDE+Y8wOETk42WuTXLMPoKamRrxp+ty73jvMx6evc6b1BgCZqYk8vLqIu5Z5mBIjrP0MnP493Gixx9nlNplewQpv76uUmle8DBCHudmLqAAOjX/T6Ql0OwGg61avxZuegVEOnWnj2DUfInaD231VBdy3ooC0ZI+XjfY22wnojrP2OD3XpsXQLKtKxSXPAoSIHDTGvGyMqXWO6wCMMYdEZDuwH1ulrnbc+TkTX/OqffPNwEiAz8/drOKWmAB3VeTzyOoiMr3a+Rw21GN3P1/7CyB2ZdKK7XYSWpesKhW3jEj0jtLU1NRIfX39XDdjRkYCQb652MUX5zsYCdgqbpsXZ7N97SLyvKriFuYfhkufwKXPIOS36beX3Q8rH4eUBd7eWyk1Z4wxR0SkZqrzdKPcHAmGhPrvuvnkbDs3hgMArCzO5PF1HldxAwgF7XLVcx84ZT6xuZJWPwuZhd7eWykVNTRAzLJgSDjR5OPTs+109tvdz+W56Ty+bhFVRZne3jwUhKZ6m357sNO+lrsc1v4U8pZ7e2+lVNTRADFLhv1B6r/r4auLnWOb3AozU3hs3SLv9zKEgnbJ6oWPYdCZ+19QaCegNcuqUuoWNEB47Mawn28udfHnxm6G/EHABoYHVhayZUkuiV7ufp40MBTZOYbSas2yqpS6LQ0QHmm/McxXFzo5etVHIGQXAizLz+D+FYWsKVnofY/h2l9sYAgX7NHAoJSaJg0QEXala4Avz3dw2tngZgysK83igRWFLMn3OGdRMABNf4ELh24Ghsxim367dIsGBqXUtGiAiAAR4XRrH1+e7xyr4JaUYKhemsN9VYUULvQ4y+mkgWERrHwMSjQwKKXujAaIGfAHQxy96uOrCx10OCuS0pMTubsijx9X5rPQq5rPYcEAXPszXDxkN7uBBgalVMRogLgDQ6NB/nS5iz9e6hrbw5Cbkcx9VQVsXZbrbQU3uE1geBxKNmtgUEpFhAaIaegfCfDVhQ7+1Ng9tuu5NDuNB1YWssHregxgaz+3HIWz795clbSwBFY8ZucYdLmqUiqCNEC40Dvo58sLHRz+rht/0K5IqirK5MGVBVQWZnq7Iims+zKc/t3N2s+Zi2DVE7bHoIFBKeUBDRC30T0wyhfn2zlypYeg7TCwtmQhD60qYnHeLFVRG+iCs+/YngPY2s+rnoIlP9ahJKWUpzRATKK9b5jPz3VwvMlHSOwf6BvLs3loVSEl2R7nSQobHbT7GL77A4QCkJAMlQ9D5aOQnDY7bVBKxTUNEOO0+Ib47Fw7p1r6EIEEA1uX5vLgyllYqhoWDMCVr+D8x+AfsK+Vb4PVT9v6DEopNUs0QABXuwb59Gwb59psZtOkBEPN8lweWFFIrtcpt8NE4PoJOPMODHTY1/KrbCW3nMWz0wallBonbgOEiHCpY4DPz7VzqcP+pZ6SaLhreT73rSggO30WC+X0XIHTb0P3JXu8oMhmWC1epxPQSqk5E3cBQkQ413aDz852jO16Tk1K4J7KfO6tKmCB19XbxhvstktWm4/Y45RMWPkELL0HEjzeS6GUUlOIuwARDAlvHW2mbyhARkoi91UVcHdFPukps/hA9g/ZtBiXv3AmoJNg+YO2zGfyLE2CK6XUFOIuQCQlJvDY2kUMjQbZtnwWdj2PN9Jvg8LlP0BgyL5WWg1rnoWMvNlrh1JKuRB3AQLsyqRZNeSDS5/aMp9Bm7OJ/CpY8xPIXTq7bVFKKZfiMkDMmoFOuPiJzbQasjmbKFprh5LyKua2bUopNQUNEF7oa4WLdc7kswDGpsRYsR2yy+e6dUop5YoGiEjyXbWTz9dP2GOTAOV3QVUtZBbNbduUUmqaNEDMlAh0XbKptzvO2tcSkmyupMpHdPJZKRW1NEDcKRFoP2PzJfVctq8lpsKye6HiYUjLmtv2KaXUDGmAmK5wSozzH0Nfk30tOcPuY1h+P6QsmNv2KaVUhGiAcEsE2k7BuQ9uBobUhba3sPRezbCqlIo5GiCmIgId5+Dc++C7Yl9LzbIrkpb8GBJnMWeTUkrNIg0Qt9N5wQaG7kZ7nJJpVyQtu08Dg1Iq5nkaIIwxOwAfUC0ieyd5vwdoBOpEZI+ba2ZFdyOcfR+6Ltjj5AVQ9Qgsux+SZqkuhFJKzTHPAoTzoEdE6owxFcaYWhGpm3DazvGvubzGOz1X7BxDxxl7nJxh5xiWP6BzDEqpuONlD2Ib8LrzcyNQDUx82OcYYypEpHEa10Reb5MNDG0n7XFSml2VVPEQpMxS7WmllJpnvAwQOROO8yc5Jw/oNsa8JiK73VxjjNkF7AJYsmTJzFrY12rnGMI7nxNTbG+h8hFdrqqUinteBggfNgDckojsAzDG+MbNPbi5Zh9ATU2N3FHLbrTB+Q+h5SggkJBsN7hV1dqlq0oppTwNEIe52SOoAA6Nf9PpCXSLyEGgy801ERH0w9f/Av6BmykxqmohfWLnRSml4ptnAUJEDhpjXjbG1DrHdQDGmEMish3YD9SMe/+g8/4PromoxGQ7hDTYZfcyaK4kpZSalBG5s1Ga+aCmpkbq6+vnuhlKKRVVjDFHRKRmqvMSZqMxSimloo8GCKWUUpPSAKGUUmpSGiCUUkpNSgOEUkqpSWmAUEopNSkNEEoppSalAUIppdSkonqjnDGmA7hyh5cXAJ0RbE400O8cH/Q7x4eZfOelIlI41UlRHSBmwhhT72YnYSzR7xwf9DvHh9n4zjrEpJRSalIaIJRSSk0qngPEvrluwBzQ7xwf9DvHB8+/c9zOQSillLq9eO5BKKWUuo24CBDGmB3GmFpjzMt38n40ut13MsbkOO/vMMa8Ohft84Lb32OsfGcX/15Xh3/Ps902r0zjv+Vds902rzjf55bVNb18fsV8gAj/x+FUp/OFq9W5fT8aufhOLwF546r4Rf1/TG5/j87rFbPZNi+4/L67nd9xhTEm5r+zc9zovN9ojKmeg2ZG3O0qa3r9/Ir5AAFsAxqdnxuBif/STPV+NLrtdxKRfSISnuCqACJf2nX2Tfl7dB6SjRNfj1K3/b5O0D9ijKkQkb0iEgvfe6rfcT1wwAkMFSLSMJuNmyOePr/iIUDkTDjOn+b70cjVd3IemN0x8vBw850rYuS7wtTft9L5X7cx5jVjzMTzo9Ftv7OI+IDXgAPY7x4PPH1+xUOA8AF5M3g/Grn9TjtEZLfXjZklt/3Oxpja23XVo5Cb3/El56F5BIj6YUSm/h3vAOpEpHLccazz9PkVDwHiMDejbAUwcbJnqvej0ZTfyRizQ0T2Oj9H/bwLU3/nbmcibwd2TD7ahxLd/HsdloN9kES7qb7z+GGlV4i9P/wm4+nzK+YDxLhJulrnuA4gvCrgVu9Hs6m+s/P6q8aYI8aYI3PX0shx8XtucF7L44fd8qjj8t/rnHHvR/1Gsqm+M7DPGLPLef+lWPjOMNYTqhnfI5qt55dulFNKKTWpmO9BKKWUujMaIJRSSk1KA4RSSqlJaYBQSik1KQ0QSimlJqUBQsUUJ3HZa3dwXXV4ye/4n6e45lVjTM807uFqjbrb85TyWtJcN0Cp+UZEGowxv3Bx6ssiYqbx0W43JMbCxkUVA7QHoWJRnjHmkDGmx9kMOJbJ1NlNfcl578BkOYqc12pud40x5oDz3qVJrn/NObcnnIJ53PnhXsrLzvsyvo2TnDdle5XyigYIFYt2AK+KSC42U234oZvj/LzTea8x/N4EFcDu210jIjsBwnl/wsK7Xp1zt2J3rOeMO3+rEwxeBbY6PZD68P0mnOe2veGgdMgJIkec/9eeiJoRHWJSsSicVgMR2eP8lZ6DrYNRH87X47w31RzCnVyTY4ypdq75wRCUiDQaY3JFxDeuRzBZz8DVvZ1EhLud/FoHYzAxoZojGiBULJqY0ruRmzmYaiZMQE+V/nta1zgP6DxsXYI84JVwUsQJ/tHpbYzP5X9H9x4XDMJDaToMpSJCA4SKRROrp1UA3diMpnXhYRywK5am+KxpXeP0CPaLyD5nKOmQMaZh/F/0TmCoxQ4x+ZziPltncu8JFeOivnqcmh90DkLFourw+Lux9afrnLoI+4Ha8EPWee8fp/is6V6zi5vzBN3O/0/8iz5cqCk8xLSbyVNTT+feO4A65/O23f4rKeWOBggVa3zAHiA8Xl8NhCd+fc7PB8a9d9vlrNO9ZlyNjR7gMjY4HXTernNWPe0bd84n2CpoteMmleuMMZemee9tTkrzWKj7oOYJTfetlFJqUtqDUEopNSkNEEoppSalAUIppdSkNEAopZSalAYIpZRSk9IAoZRSalIaIJRSSk1KA4RSSqlJ/f+UP1y32yq+bQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEJCAYAAACOr7BbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3dd/W1e24PnfZhIzwSwGURJI5UxRDuVyKItyUDmXbNW9t3v6pU1Vz8s8zHzs8v0Dpq7UPQ/9NNdyv3T33K6yLedQtkXZ5WyXKSpHklBiEDNIMYPAnod9QMI0JIIkDkAC6/v5+GOcgwNggwKxuNNaSmuNEEIIMVNCtBsghBBicZIAIYQQIigJEEIIIYKSACGEECIoCRBCCCGCkgAhhBAiKAkQQgghgpIAIYQQIigJEEIIIYJKinYDFqKgoECvWrUq2s0QQogl4/jx4z1a68JQrl3SAWLVqlU0NDREuxlCCLFkKKWuhXqtDDEJIYQISgKEEEKIoCRACCGECEoChBBCiKAkQAghhAhqSa9iuhOfz0drayvDw8PRbkpMS05OpqioiOzs7Gg3RQgRZjEbIHp6elBKsW7dOhISpKNkB601o6OjtLW1AUiQECICBkY93OgbYXNZju2vFbPfnG63m+LiYgkONlJKkZ6eTllZGV1dXdFujhAx73Srm/9a38RffrpOx8Co7a8Xsz0Ir9dLcnJytJsRF9LS0vB4PNFuhhAxa2RikvdPtnOqdQCAdcWZpKfY//UdswECzF+4wn7ycxbCPpdu3uLtxlYGxyZZlpTA3i0l7FqVG5Hfu5gOEEIIsVSNT3r565mb/HilD4CV+ek8v7Oc/MxlEWuDBAghhFhkrvUO80bDDfqGPSQlKGo3FnN/VQEJCZHtrUuAiCMul4sjR45QXV1NY2MjdXV1OByOoNc2NjbS0NCA2+3mp59+4uDBgzidzgi3WIj4Mun1UX+hk6+aetAaSnJSeaFmBctzUqPSHgkQceT555/n+PHjANTU1PDiiy/y5ptv/uI6t9tNQ0MDdXV1ANTX17Nnzx5aWloi2l4h4knHwChv/NTKzcExlIKH1hWye30RSYnRW4kZNwHilbfPROV1//Tclqi87kyNjY3k5eVNHTscDurr64Ne63K5OHjw4FSAqKmpweVy4Xa7b9vjEELMj8+n+bKpm2MXOvH6oCAzhed3rqAiPz3aTYufALFUHDlyhL6+PpxOJ3l5eVRXV//sfrfbzeHDh+nt7b3tc1RWVk59ufu5XK5ffLnn5eXR2Nj4i9eorq7m6NGjU8cNDQ04HA4JDkKEWc/QOG82tHK9bwSAe5x5PLZ5OcuSEm//IK1htB/S825/TZjYGiCUUvsAN1CttT40475q4Djgsk7Va60PKKUOaq1fVkrVaa0Ph6sti+Uv+Tt5+eWXp77cGxsb+dOf/vSLISCHw8FLL7005+fu6+ub0/WB8w2vvvoqr7322pxfUwgRnNaaH6/08dczHUx4NdlpSfyuupy1xVl3fuCoG07+Gwx1woMvQ0qGre20LUBYAQCtdb1SyqmUqtZaNwZckqe1VgHXuq3zdVZgOWBX2xYjl8vF4cOH6e/vB8xf8cHmB+YrLy8Pt9v9s3OhBI3Dhw+zf/9+9u3bF7a2CBHPBkY9vN3YyuXOIQC2r8jhqW1lpKXcodcAcPMMnPwzeIYhJROGe5ZugAD2A/5xChdQC0wFCK114AB4TUBv4UWt9REb27UoNTY28sILL8x63XyHmJxOZ9CAMHN4KVB9fT1Op5Pa2tpZ2yWEuDOtNY3X3Xx0uoNRj5f0lESe2V7GlvJZcip5PXD+Pbj6tTkuXA/b/wlS7c99ZmeAcACB30j5wS5SStUCbwScclrnfjEsFcuCje8Hmx+Y7xDTzOdxuVw/++J3uVzk5eVNtcM/qe1/3JEjR6QXIcQ8DYx6ePdEGxdv3gJg/fIsnq0uIzt1lnRAg+1w/L/D0E1QibDhSXA+BBHKXrAYJqn3BPYm/EFBKbVHKVU7o6eBUqoOqAOoqKiIaEPtVFtby9GjR3+2sijcf7m/9tprHDp0aGofROC8wssvv8yePXuoq6vD5XKxe/funw1JOZ1OCRBCzJHWmhM33Hx4yvQaUpMTeGJrKdUVjjunytDa9BjOvwe+Scgogp3/AXLKI9d47A0QbsA/ze4AbjcmMvWnrfXl32cNMfUCv9iZZQ1FHQaoqanR4WxwtB08eNDW56+urp7qEcwMPoHzHU6nc2ouRAgxPwOjHt472caFDtNrWFecybPV5eSkzdJrGL9l5hq6zpnjinth07OQFLkUG352BojXgRrrthOoB1BKObTWbuv2zADQwPSqpkrgVRvbJ4QQYRe811BCdUUICfa6L8GJ/2mCRHI6bN0Ppdsj0/AgbAsQWutGpVSNNZ/gDljBdAzYGXCpa8Zj6pRSfUDLjFVPQgixqM271+CdhEsfQcvn5jivEqr/PaTl2tziO7N1DiLYPgat9c6A2y5mLGcN594HIYSIhAX1Goa6oPG/w0ArqARY+xhU7YFFUOxsMUxSCyHEkjU4ZlYo/azXsKOcnPRZeg1aw40f4exb4J2AtDzTa8hbPEkxJUAIIcQ8aK05ecPNB1avYVlSAk9uC7HXMDECZ96A9hPmuLQatr4AyWn2N3wOJEAIIcQcDY55eO9EG+etXsPa4kyeC6XXANDbYiaiR/shcRlseR7KayK2t2EuJEAIIUSIgvUanthaws6VIfQafF64/Ak0HQU0OCpgx/8GmYURaft8SIAQQogQzFyhNKdew1A3nPgf4L4OKKiqhbWPQ+Li/gpe3K0TQogo01pz/Fo/H53pYMzjIzU5gd9uCbHXoDVc/wHOvQPecUh1wI5/DwVVkWn8AkmAiCNzKTnqt2fPnp/VhhAinvQPT/DOiTaaukzm1Q0lWTy9vWz2fQ0A40Nw+i8mCyuYiegtz0NK9AsBhUoCRBwJteQomEyuLpfrtlXnhIhl/noNn5y9yfikj/SURJ7YWsL2FbPkUPLrumjqNowPQlLq9ET0EiMBIk7MpeQoTOdqOnAgrspyCEHv0DhvN7bh6hkGYFNpNk9vLyVrtsyrYFJzX/gArnxpjvOcZkgpAtXf7BA/AeKD/yM6r/vkf53T5Yuh5KgQ8UhrzXctvXx27iYTXk3mskSe2hZCvQa/wXZo/J9wq93aEf24mYxeBDui5yt+AsQSsJhKjgoRT7pvjfNWYyvXek1t6G3lOTy5rZSMZSF8RWptegwXPrBScxeaXkPuSptbbb/4CRBz/Es+0hZryVEhYpnPp/mmuYf6C514vJrs1CSe3l7GxtIQq7WNuuHk/4KeS+a44lew6ZmopOa2Q/wEiEVuMZYcFSKWdQ6OceR4K639owBUVzh4Ymvp7LWh/TpOw6m/mBrRyRmw7fdQstXGFkeeBIhFYrGVHBUiVnl9mq8ud3PsYideH+SkJfPsjjLWLc8K7Qkmx82+huvfm+PCDbD9HyA1xLmKJUQCxCKxmEqOgglO/rb47wt3e4SItHb3KG8db6V9YAyAu1bn8vjmElKTQ+w19F+FE/8fDHdDQhJseApWP7Ao8yiFg9J66VbtrKmp0Q0NDUHvu3DhAhs2bIhwi+KX/LzFYubx+vj8YhdfXe7GpyE3PZnnqsupKsoM7Ql8Xmj6zPynfZBValJzZ5fa23AbKKWOa61D2pQhPQghREy71jvMW8db6R6aQCm4ryqfPRuLWZYUYq9hqMtkX/XnUap8GNbthcQQ9kUscRIghBAxaXzSy6fnOvnB1YvWUJi1jN9Vl7EyPyO0J9Aarn0H5981BX2WWB6lcJAAIYSIOU2dt3jnRBv9Ix4SFDy0rpDfrC8iOTHETWtjg3Dqz9B13hyX1cDm3y2pPErhIAFCCBEzRie8fHSmg+PXzH6i0pxUfreznFLHHCq1dZyG06/DxBAkp5s8SmXxuRw8pgOE1jq0xFpiQZbyQgcRO862DfD+qXZujU2SlKDYvaGIB9YUkpAQ4neAZwzOvW3qRAMUrIPt/whp8bv0O2YDRGJiIh6Ph5SUlGg3JeaNjo6SnBz7E3Zicbo15uGDUx2caRsAYFV+Os9Vl1OYNYfdzH0us3x1pBcSkmHDkzG9fDVUMRsgHA4HnZ2dlJWVkbCEk2UtZlprRkdHaWtro7i4ONrNEXFGa82JG24+Ot3ByIQp//nopuXc48wLfeTAO2nKgDbXAxqyy83y1azltrZ9qYjZAFFQUEBrayuXLl2KdlNiWnJyMsXFxWRnh5i7RogwcI9M8O6JNi51mkI+a4szeWZ7GbkZcxgxuHXTLF8daMWUAd0Dax9b9GVAIylmfxIJCQlUVFREuxlCiDCaWcgnLTmR324toboixEI+5kng6tdw/n3weSA9H7b/E+RX2tv4JShmA4QQIrZ03xrnnROtXOkxKbnnVMjHb9Rtlq92XzTHK+6GTc9BcqoNLV76JEAIIRY1r0/zVVM3n1/oYtKnyUpN4qltpWwum2NyvLbjcOYIeEas7Kv7oWSbPY2OERIghBCLVmv/CG83ttFhJderWZnL3i0loafkBpgYhjNvQvsJc1y0yaTmTpV5s9nYGiCUUvsAN1CttT40475q4Djgsk7Va60P3OkxQoj4MDHp49iFTr5u7kFryMtI5tkdc0iu59d1wRT0GR+ExGWmmE/FvXG/fDVUtgUIKwCgta5XSjmVUtVa68aAS/K01irgWncIjxFCxLjmriHePdFG77BJrnf/mgJqNxSTkjSH5eqT43D+Pbj2rTnOXW3yKGXk29PoGGVnD2I/cNS67QJqgakve611fcC1NVrrw0qpg3d6jBAido1OePn4TAcNVpqMkpxUnt1Rxoq8OeY/6rsCJ//N1GxQibB+LzgfBtkPNWd2BggHEFjjMmjoVkrVAm+E+hilVB1QB8gyViFixMw0GQ+vL+KBtYUkhpomA8ymt6ZPoekooE3Nhh3/DnLKbGt3rFsMk9R7ZvQm7khrfRg4DKZgkG2tEkLYbnDMw/sn2znXPgiYNBnPVpdRlDXHZaeDHSZVxqC16a1yt1WzYTF8xS1ddv703ECeddsB9N7musA0iaE+RgixhGmtOX6tn4/P3GTUM880GeaJwPU3uPgh+CZl01uY2RkgXgf8Ze2cQD2AUsqhtXZbt52hPEYIETt6h8Z550QbLd3DAKxfnsUz28vISZ9jwseRPjPX0NtsjivuhY3PyKa3MLItQGitG5VSNdYcgztgNdIxYGfApa4QHiOEWOJ8Ps03zT3UX+jE49VkpCTy5LZStpbnzL3XcOPvJjX35BikZMK2f4Dlm+1rfJyydYDOmi+YeW5nwG0XcGC2xwghlrY29yhvH2+l3drwtmOFg99uLSFj2Ry/gsZvmWI+N8+Y4+VbYesLsCwrzC0WsDgmqYUQMcq/4e2b5h58GnLTk3lmRxlri+fxhd5xCk6/YSq9JaXC5n1QXiOb3mwkAUIIYYvmLlMXum/Yg1Lw66oCajcWsSxpDmkyACZGzHBS60/muGCtGVJKz7vz48SCSYAQQoTVyMQkH53uoPG6G1jAhjeA7ksmVcaY21R62/gUrLpfeg0RIgFCCBEWWmtOtw7w4el2hsa9U3Wh718zxw1vYFJlXPjA1G0AcKw0m94yi8LfcHFbEiCEEAs2s8KbsyCDZ6vLKMicQ11ovz6X6TX4U2Wse9xsfJNUGREXUoBQSmUDh4DVWutHlVI7gJ1a6/9ma+uEEIuaz6f5wdXLZ+c7pyq87d2ynJ0rc+e2dBVMqoxLH0PL50iqjMUh1B7Em8AfgFcBtNYnlFKHAQkQQsSpmwNjvH2ilRt9owBsKcvhyW0lc6vw5jfQCif+DW61Y+pD18LaxyVVRpSF+tOv1FpfmfEXgcwSCRGHPF4fX1zs4svL3fg0ZKcl8fS2MjaWzqMAj88HzfVw+RPQXsgohO3/CHkzkyyIaAg1QLyqlHoDyFVKPYfZ3Pav9jVLCLEYubpNrYbuoQkA7nHm8eim5aQmz3HpKsBQl0mw575mjlfdDxuehKR5zFsIW4QUILTW/9mad9gP3AX8UWt9wtaWCSEWjZGJSf565uZUrYbCrGX8rrqMlfkZc38yreHKV2aVks8DqQ7TayhcF+ZWi4UKdZL6/9Ja/xfgxIzzz2Eqw8lchBAxSGvNmbYBPjg1vXT1oXWFPLi2kKTEeawqGukzK5R6m8xx+S7Y9BykzGOPhLBdqENMdymltmMyrTZorU8qpf5fzDyEWyn1J631K7a1UggRcf3DE7x3cnrp6uqCdJ7ZXkZR9jyypWoN13+Ac++Ad9wk2Nu6H0q2hrnVIpxCDRAO4BVM+u0/KKWagRcwy14HlVI/WfcLIZY4n0/zXUsvR8/fZMKrSU1O4PHNJexaNY+lqwCjbpNgr+u8OS7ZBluelwR7S0CoAcKpta6ybr+mlPoMcGitB61zsqJJiBjQ7h7lnRNttPabpatby3P47dYSsuezdFVraDsOZ98Czwgkp8OWfVBaLakylohQA8RhpdSnmNoNNZiAoJRS/xFTQ9p1pwcLIRa38Ukvn1/omsq6mpOWzNPbS9lQMo+lqwBjg3Dmjem03EWbTFruNEf4Gi1sF+oqpkNKqVcxPYn/pJTKse56xdytX7CthUIIW13uvMV7J6ezrt5Xlc+ejcVzz7rq134Szrw5nZZ703Ow4i7pNSxBIW9T1FoPYK1ism4D/NGORgkh7Dc0PsnHpzs4cSMMWVcBJobhzBFotwpBFqyDbb+XtNxL2FxyMf0zsDrwvNZ6vx2NEkLYR2tN4/V+Pj5zk5EJL8mJit0bivl1VcHcs6763TwLp/9iKr4lpsDGp2HlfdJrWOLmkovpMLAbqAN2WbeFEEtIz9A4755oo6V7GICqokye2V5K/nyyrgJ4Rs3S1Rs/muO8SrPpLaMgTC0W0RRqgMjTWr+llNoPNFvJ+l60s2FCiPCZ9Pr4uqmHzy92MenTpKck8sTWEravcMxv6SrMKOaTBOufgNUPSlruGBJqgLhi/f9V4IhSqhHItadJQohwutozzDsn2ui6NQ5AdYWDvVtKyFg2z0ypk+Nw/n249o05dlTA9n8HWcVharFYLEJdxfSC9f9jSqk+zFLXnXY2TAixMKMTXj4518Hfr5j8SQWZKTyzo4zKwsz5P2lvC5z8NxjplWI+cSDUSerXgdeBeitJnyTqE2KR8pf+/OhMB7fGJklMgAfXFvHQukKS55M/CUyv4eKHJskeQHYZbP8nKeYT40LtY/4LUItJs5ELNABvaK2/sK1lQog567PyJ1228ietyk/n2R3zzJ/k19sCp/5slQBNgDWPQNUeKeYTB0IdYvL3Gv6zUmo3ph5EPTDPnTRCiHDy+jTfNvdQf6ETj1eTlpzIY5uXzz9/EoDXY3oNri+ZKgG6/R/BsSKsbReLV8jpvjFLWx1AI/Cq7J4WYnG40TfCOyfa6BgYA2CblT9pXqU//fqumBVKw12m11C1B9Y8Kr2GOBPqv3YV0I9ZzXRUa/25fU0SQoRizOPls/Od/ODqRWvIy0jm6e1lrC1eQJZUrwcufQwtXwAaMpfDjn8yK5VE3Al1iOkPMLWjutaatHZqrXfd6XFKqX2AG6jWWh8Kcn814LRe44h17qDW+mWlVJ3W+vCc3o0QceJs2wAfnG5ncHSSBAUPrC3g4fXFpCQtYDVR/zXTaxi6CSioqoW1j0HiAnoiYkkLdYhpO2aS+hHMF3ojZuL6To+pBtBa1yulnEqpaq1144zLXtFaP6+Ueing/jorsByY65sRItYNjHh4/1Qb5ztuAVCem8Zz1WWU5KTN/0m9k3D5E2iuBzRkFJleQ+6qsLRZLF2hDjEdAt4ADmitr8x2sWU/cNS67cIEmKkAYQWBn8Bkiw143Iv+3oQQwvAX8am/0Mn4pI9lSQk8umk5d6/OI2G++ZMA3NdNr+FWB6Cg8mFYt1d6DQIIfYjpkXk8twNTK8Ivf8b9u2Cqp1EbECScSqlabjMsJUS8udE3wrsn2mi3JqE3l2XzxNZSctIW8CXunYSmT02vQfsgo9CsUMpzhqnVIhZEe0lCr9a6USlVq5Tap7U+4g8KSqk9SqlarXV94AOUUnWYhIFUVMjEmYhdMyehc9OTeWp7KeuXz7OIj99Aq+k1DLYByuRPWv8EJKWEpd0idtgZINyAPxG8A+idcX8v05Xo3MAupVQe0GcNMfViTWAHsiauDwPU1NRoG9otRFRprTnXPsgHp9oZHJuehP7N+qL5F/EB02toPgpNn5leQ3q+2Q2dXxm+xouYYmeAeB2TswnMF309gFLKobV2A0eAfdb9Dsx8hIvpoFGJSQ4oRNzot3ZCX7J2QlfkpfPMjtKFTULDjF4DsOp+2PAkJM0zzbeIC3MKENYy1yla68HbXWsNHdVY8wnugBVMx4CdWmuXUsptTVbnBwwt1VkJAVuCrHoSIiZ5fZpvmns4Zu2ETk1O4LFNy7lrdd78d0KDNdfwmek5+HsN2/4RCqrC13gRs5TWs4/SKKX+BTPu3wv4P61aa73GxrbNqqamRjc0NESzCUIs2PVesxP65mAYd0KDtULpz3Cr3RyvfsCaa5BeQzxTSh3XWtfMfmXoPYh9WmspLCtEGI1OePn03E3+frVvaif0M9vLWLOQndDwyxVK6QVmhZLMNYg5CjVA1CulVmqtr9naGiHiQLB03A+sLeQ364vmn47bb+a+htUPwvrfSq9BzEuoAaIGuKKU6sfsbVAsgiEmIZaanqFx3j/ZTlNXGNNxw/Ru6JZj0/satv2D9BrEgoQaIHbb2gohYtyk18eXl7v526VuJn0mHffeLcvZuXIB6bj9gvYaZF+DWLhQd1IPWCuY/Cm+j8pwkxChae4a4v2TbXQPTQCmJvTjW0rInG9NaL9gvQbZDS3CKNRkfbuBg5i9DfnAy0qpl7TW79jZOCGWsltjHj4+08HJGwMAFGUt4+ntpTgXUhPab2bmVedDsO630msQYRVyydHAZVHWstejgAQIIWbw+TQ/Xunjs/M3GfP4SE5U/GZ9EfdXFZC00Elorwcu/RVaPmcq8+r2f5Beg7BFqAHiZ4OkWmu3VZtaCBGgzT3KuyfaaO0fBWBdcSZPbS8jLyMMf9n3ucy+huEuJPOqiIRQA8RhpdSnTKe+OICkwRBiypjHy9HznXxvJdbLTkviya2lbCrNXvgk9OQEXPpoujZ0ZrFZoZS3OixtF+J2Qp2kPqyUasBMUjuAQ1rrY7a2TIglQGvNmbYBPjrdMZVY776qAnZvKCI1eQGJ9fx6muHUn2Gkx9SGrtwtVd5ExIS8jMLKiyS5kYSw9A6N8/6pdi5bifVW5KXxzPYySh0LTKwHMDkOFz6Aq1+b46xSM9cgtaFFBN02QCileoHVWutBpVQzEJi0STbKibg16fXxdVMPX1zqwuM1exoe3VS88MR6ft2X4NRfYLTP9BrWPAJVeyAx2uVbRLy50yeuJiBb685INEaIxW7mnoYdFQ72hmNPA4BnFM6/B9e/N8fZ5WZfQ07Zwp9biHm47ad6Ru3pP2qtX/EfKKVygH8B/pONbRNi0RgY9fDXMx2cajV7GgozU3h6RxmV4djTANB5Hk7/BcYGICHJzDNUPgwJYZjHEGKeQv2zpxZ4Zca5PWFuixCLjs+n+d7Vy9HznYxPhnlPA8DEMJx7B1p/MseOlabXkLV84c8txALdMUAopV7ELGmtVko1BdzlrwgnRMy63jvCuyfb6BgwdRo2lmTxxNZScsOxpwGg4zSceQPGb0FCMqzfC6sfgoQwBB4hwuCOAUJr/RrwmlLqX7XWf4hQm4SIquHxST45e5OGa/0A5KYn88TWUjaWZs/yyBCN34Kzb0H7CXOc5zT7GjKLwvP8QoRJqPsgJDiImKe1puFaP5+cvcnIhNfUaVhTyEPrikhJCsNf9VpDeyOcfRsmhiAxxdSFXnU/hGP1kxBhFmqyvmzgn4Gfbd3UWu+3o1FCRFq7e5T3TrZzvW8EgMrCDJ7aXkpR1gLrNPiNuuHMm9B51hznrzG9hoz88Dy/EDYIdZL6TeAwpi5EHbALqREhYsAvUmSkJrF3Swlby3PCs6dBa7Ns9fx7MDkGSamw8RmouEd6DWLRCzVA5Gmt31JK7QeatdYnrAlsIZakmWU/lYL7qvKp3VAcnhQZAMM9ZsNbr7W+o3gzbHke0hzheX4hbBZqgPDviTgMHFFKNQKSzVUsSV23xnj/ZDst3cMAVOSl8/T20vCkyADw+eDKl3DxI/B5ICUTNv8OSndIr0EsKaFOUr9g/b/eSsFRg+yuFkvM+KSXLy528U1zD14fpKck8vjmMJX99BvsgFP/y5QBBSirgU3PwrIwbagTIoJCnaRuBo4Dr2ut3wZO2NoqIcLIn3H14zM3GRj1ALBrVS6PblpORjhSZIAp/9lcD02fgfZCqgO2vgDFm8Lz/EJEQag9iCql1A5gv1Lqn4Fe4F+l5KhY7LoGx3j/1PRwUnluGk9tK2VFXnr4XqT/mknJfavDHK+8DzY8BclhWgElRJTMJd33CeCEFSgOYHZSS6IYsSiNeaaHk3zaDCc9srGYXavySEgI03DS5ARc+hhcfwM0pBeYpasFVeF5fiGiLNQhpocxxYJ2Y2pCvC6b58Ri5F+d9PHZDgZHzeqku1ab4aT0lDCmyw4s5OMv/7n2cUgKUxoOIRaBUH9j/oAEBbHIdQ6O8YHdw0meUTj/Plz/zhxnlcK230PuyvC9hhCLxFyGmN6a65MrpfZhEvtVa60PBbm/GnBaz38klMcIMdOYx8uxC1181zI9nPTY5uXUhHN1EkDHKThzBMYHQSVahXxqpZCPiFmhfrJdSqn/U2v9/4T6xNaXv39prFMpVW2VLQ30itb6eaXUS/7rQ3iMEIAZTjp5w80nZ28yaG12u3t1Ho9sKg7vcNKo2yTXu3naHOeugq2/h+yS8L2GEIvQXOpBVFsrmPoIreTofuCoddtlPcfUl73VU/gJ80SHrHMH7/QYIfxuDozx/qk2rvSY3Ekr8sxwUnluGIeTptJkvA+To5C4DDY8ASt/LSm5RVwINUDMJ++SAxNM/GZmJdsFUz2NWitIzPYYlFJ1mHxQVFRIAfd4Mzrh5djERan5AAAVmElEQVTFTr5v6cWnIcMaTgrrZjeAoS6TJqOvxRwXb4Yt+yBNEgiI+BFqgNDAIWCV1voxa6nrTuC/LfD1e7XWjUqpWqtHMXtDtD6MSflBTU2NXuDriyXC5zOpuI+ev8nQuBel4B5nHo9sXE5aShhXW3snoeVzaPoUfJOSJkPEtblkc/0D8CqYPRFKqcPcOUC4gTzrtgOzuS5QL2YYyX/trhAeI+LQ1Z5hPjjVTrtV2W11QTpPbA1j7iS//qtw6nW41W6OV9wNG5+GlIzwvo4QS0SoAaJSa31lRhd+tj+nXsfkbAKzUqkeQCnl0Fr7S5b6ew0OzHyEK9hjRHwaGPHw17MdnGodACAnLZm9W5azpSxMqbj9JsdNYr0rXzG14W3rfihcG77XEGIJCjVAHFZKvQHkKqWeI6A3cTvW0FGNUqoWcAesRjoG7NRau5RSbmtoKT9gojrYY0Qc8Xh9fNPUw98udTHh1SQnKh5YU8gDawvDU9ktUOd5Uxd6tB9UAjgfhrWPyYY3IQCldWjD+P5cTJj5iL9qrb+ys2GhqKmp0Q0NDdFuhggTrTXn2gf5+EwH/SMmqd7msmz2bi4hNyPMX9jjt+DcO9B23BznlJs0GTnl4X0dIRYZpdRxrXXN7FeGnmrjJ8xKplcxWV2rlVK/11r/7/NvphDTbg6M8eHp6V3Qy7NTeWJbCZWFYU6TrTW0Npjg4BmGhGRYvxdWPyRLV4WYIdQhJofWelAp9Qrwf2ut/4tSqsnOhon4MDIxydHznfx4pQ9t7YKu3VDM3avDmFTPb6jL1IXuuWyOC9aZuQapCy1EUCFXlLPmHg4A/h3PA/Y0ScQDn0/z45U+6i90MjIxvWx1z8Yw74IGa+nqMVOrwTcJyRmw6Rko3yVLV4W4g1B/Ew9gNqft01pfVUqtZpZJaiFux9U9xIenO+iwlq1WFmbwxNZSlufYUD+hpxlOvw7DXeZ4xd2mVoNUeBNiVqEGiF5MDeqXgc8xy1Jlk5qYk+5b43xytoPzHbcAyE1PZu+WEjaVZod32SrA+BBceB9u/GiOM4rMcJLUahAiZHZulBMCgOHxSY5d7OJHl0mPsSwpgQfWFnD/mkKSE8M8Maw1tP4E5961JqGToGqPZF0VYh7s3Cgn4pzH6+P7ll6+uNTFmMeHUqYWdO3GYrJTk8P/gkNdZjipt9kcF6yFLc9DZlH4X0uIODDfjXIHgH+1r1liKfNXdfv03M2p/QxrijLZu6XEnnkGrwea681//vxJG5+B8hqZhBZiAUIKEFrrQwEb5e4C/mjVqBbiZ671DvPRmQ5u9I0CUJy9jL1bSlhbnGXPC/Y0wek3Aiah74GNT0n+JCHCINSNcq9rrfcDEhREUL1D43xy7iZn2wYByEpNonZDMTUrc8O/nwHMJPT596D17+Y4s9hMQudXhv+1hIhTc9kHMaeKciI+jExM8sXFbr539eD1QXKi4v41hdy/poDU5DCm4fbTGm783QQH/yT0mkeh8mGZhBYizOysKCdi2KTXx49X+jh2oYtRj9notnNlLns2FJOTbsMENMBAq9kJ3X/VHBeshS0vQGahPa8nRJyzs6KciEH+hHqfnL1J7/AEYDa67d1SEv76DH4TI3DpY7j6DaBhWZaZhC7bKZPQQtgo1ElqSasR57TWtHQP8em5Tlr7zQR0YdYyHt+8nPXLs8K/0c28qBlOuvA+TAyZdNyrHoB1j0OyTcFICDFFBm3FrK71DvPZuU5cPSbTalZqEg+vL2LXqjwS7ZiABms46Qj0XzHHeU7YvA9yyux5PSHEL0iAELfVMTDK0fOdXLBSY6QlJ/LgukLudeaHv3CPnwwnCbFoSIAQv9AzNE79+c6pUp/LkhL4VWU+968pJC3FhpVJIMNJQixCEiDElIERD59f6qThaj8+DUkJirudeTy0rojMZTZ+VGQ4SYhFSQKEYGh8ki8vdfODq5dJn0YpqFmZy+4NRTjSbazNHGw4acPTkiJDiEVCAkQcG/N4+bqph2+bexif9AGwtTyH2g3FFGYts++F/RlXz78nw0lCLGISIOLQxKSPH1y9fHm5m5EJLwDrijN5ZNNy+/Yy+Lmvw9m3ZThJiCVAAkQcmZj08dPVPr663M3g2CQAqwvSeWTjclYV2JzcbtQNFz80PQeQ4SQhlgAJEHFgfNLLj64+vm7qZmjc9BjKHKk8smk5a4oy7dnk5jc5AS2fm5rQ3gmTO2n1g7BmjwwnCbHISYCIYWMeLz+4evmmqYdhayipPDeNh9cX2bf72U9raDsOFz6AMbc5V7LN9Boy8u17XSFE2EiAiEGjE16+d/XwTVMvox4TGFbkpbF7fTFri23uMQD0XYFz74D7mjnOLodNz0o9aCGWGAkQMWR0wsu3zT1829LDmMesSlqZn07thiIqCyMQGEb6TI+hvdEcL8uC9U9C+S5IsGnntRDCNhIgYsDw+CTfNPfwfUvv1HJVZ0EGD28owlmQYX9gmBw35T5bvgCfBxKSofI3UFULSTYulxVC2MrWAKGU2ge4gWqt9aEg9x/UWr+slKrTWh++3TkR3ND4JN80dfODq28qMFQVZfLw+iJW270qCabTY1z8EMZNJTlKq2HDk5CeZ//rCyFsZVuAUEpVA2it65VSTqVUtda6ccZldVYQOTDLORHg1piHry738OOVXjxeDcDaYhMYVuZHqBZzbwuce9ukyQBwVJh5hjxnZF5fCGE7O3sQ+4Gj1m0XpirdzADxotb6SAjnBNA3PMHXTd00XO1n0mcCw4aSLH6zrogVeemRacRQl+kxdJwyx6k5sOEpybYqRAyyM0A4MOVJ/YKtbXQqpWr5+RBUsHNxrWNglC8vdXO6bQBt4gIbS7N5eH0RZXbvfPYbG4DLn8L170H7zDxDVa2Za5B5BiFiUlQnqf0BQCm1RylVq7WuD3Yu8DFKqTqgDqCioiLibY4UrTVXe0f48lIXlzqHAEhQsKPCwYNrCynKTo1MQyZGzEY319/MBDQKKu6FtY9CWm5k2iCEiAo7A4Qb8M9UOoDewDutL/o+azipF9Nz+MW5mU9qTVwfBqipqdH2NT86tNZcvHmLLy93c613BICURMWu1Xn8uqrA3uyqgbweuPIVNB8Dj6kkx/KtsP4JyCqOTBuEEFFlZ4B4HaixbjuBegCllENr7QYaMHMTAJXAq9btYOdintenOdXq5qvL3XQOjgOmgtuvKvO5tzKfDDvrMQTy+Uy+pEsfT++Azq8ygSFvdWTaIIRYFGz71tFaNyqlaqz5BHfACqZjwE7r/jqlVB/Q4r8/2LlYNjHpo+FaH9809dA/4gEgOy2J+6sK2bU6l2VJNlVwm0lr6DwLFz6EoZvmXHaZCQxFG2QCWog4ZOufpcH2MWitd85yf1zsfRidMHmSvm2ezpNUmJnCg+sK2VbuICkxgjuPe1vMDmh/Cu70fFi3V1YmCRHnZCd1hA2MePi2pYe/X5ne3Faem8aDawvZWJJNQkIEv5AH2+HiR6bnAJCSaSafK34FifLRECLeybdAhHQMjPL15R5OtbqxtjBQVZTJg2sLqSyMQDqMQCN9Zo6htQHQkLgMKh8G50OQHKHVUUKIRU8ChI201rR0D/HV5R6ausxSVaVMWc/71xRQnhuhzW1+o26TM+n69+CbBJUIK39leg3LsiLbFiHEoicBwgZen+Z0q5uvm3roGBgDzFLVmlV53FdVQF5GhJaq+o0NmoI9V7+d3stQVmPmGaQ2gxDiNiRAhNGYx8tPV/v4trmXgVGzIikrNYl7K/O5e3Ue6SkR/nGPD5lNble/NtXcwBTtWfs4ZJdEti1CiCVHAkQYDIx6+K65hx8DJp4Ls5bxwJoCtq1wkBzJFUlgdj+7vgDXl+A1eyoo3gzrHoec8si2RQixZEmAWICbA2N81dTNqRvTE8+rC9K5f02h/SU9g/GMwZUvTV2GyVFzrmgjrH0McldGti1CiCVPAsQcmYnnYb5u6uZy5/TE85YyM/EcsayqgSbHzTBS8+fTaTEK1poeg6TfFkLMkwSIEE16fZxuG+CbGRPPO1eZHEkRn3gGky/p6jdmZdKECVbkVZrJZ6n/LIRYIAkQsxiZmOTHK3380NLL4NgkAJnLErm3Mp97nPmRn3gG8E7C9e+g6eh0JTfHSlj/W9NzkN3PQogwkABxGz1D43zb3EPjtX4mrKptxdnL+HVVlCaewQSGGz+YwOBPpJdTbnoMRRslMAghwkoCRAB/DYZvmrq5cPPWVHGeNUWZ3L+mgKqizMhPPIMZSrr+vRlKGhsw57JKYd1jJgW3BAYhhA0kQGA2tp1tG+Cb5h5a+83qn6QExfYKB79eU0BxpIrz/KJhHrj2ndnk5g8M2WWw5hGzn0ECgxDCRnEdIMY8Xv5+pY/vWqY3tqWnJHKPM597nHlkpSZHp2FeD1z71hTr8c8xZJfD2kekxyCEiJi4DBB9wxN819JDw9X+6Y1tmSncV1XAjopcUpKiML8AMDlhAkPLMRi/Zc5ll5uhpOLNEhiEEBEVdwHi1A03rzfcmJpfqCzM4NdrClhXHIWNbX6T42a5asvn08tVc1aYDW7FmyQwCCGiIu4ChLMwg5TEBDaWZvPrqgJKHWnRa4x/g1vLF9OBwVFhAoOsShJCRFncBYis1GT++Ph6UpMjVMozGM+Y6TG4AgPDSiswSHlPIcTiEHcBAohecPCMwpWvwfW36ZQYuatMYChcL4FBCLGoxGWAiLjxIZNE78rX00n0clebXEmy81kIsUhJgLDT2KAZRrr67XTa7YK1Zh9DfpUEBiHEoiYBwg6j/WYPw/UfrApumEnnNXsku6oQYsmQABFOw70mHcaNH0F7zbnlW01gcFREt21CCDFHEiDC4VYnNB+FtuOgfYCC0mozlCSlPYUQS5QEiIUYaDOBof0koEElwIq7oaoWMoui3TohhFgQCRDz4b4Olz+FzrPmWCVCxT1QuRsy8qPbNiGECBMJEKHSGnpbTI+h+6I5l5AMK++FyochLTe67RNCiDCzNUAopfYBbqBaa30oyP0HtdYvK6XqtNaHQ3lMxGkNXReg6TPov2LOJS6DVfeB8zeQmh3d9gkhhE1sCxBKqWoArXW9UsqplKrWWjfOuKzOCggH5vCYyPD5oOOkWZU02GbOJafD6gdh9f2QkhGVZgkhRKTY2YPYDxy1bruAWmDml/2LWusjc3yMvbyTZjVScz0Md5lzy7LMMFLFryA5SsWDhBAiwuwMEA6gL+A42OytUylVy/RwUiiPscdUWc9j0/We0/LMiqQVd0FilIoHCSFElER1kto/x6CU2mMFilkppeqAOoCKijBsPvOMmlQYgZlVM5ebzW2l1ZAQpeJBQggRZXYGCDeQZ912AL2Bd1pf9H3WEFMv4JztMQDWZPZhgJqaGj3v1gVLoJezwgQGKesphBC2BojXgRrrthOoB1BKObTWbqABM88AUAm8ap37xWPCatRtKrdd/x68E+ZcfhVU7YHCdRIYhBDCYluA0Fo3KqVqrKEjd8BqpGPATuv+OqVUH9Div/82jwmf/qum5wCSQE8IIe7A1jkI/96GGed2znL/L86FVck2s1R1xV2QU27rSwkhxFIWfzuplYLNz0W7FUIIsejJEh0hhBBBSYAQQggRlAQIIYQQQUmAEEIIEZQECCGEEEFJgBBCCBGUBAghhBBBKa3nn84o2pRS3cC1eT68AOgJY3OWAnnPsS/e3i/Ie56rlVrrwlAuXNIBYiGUUg1a65rZr4wd8p5jX7y9X5D3bCcZYhJCCBGUBAghhBBBxXOAsDcp4OIk7zn2xdv7BXnPtonbOQghhBB3Fs89CBFDlFL7lFK1SqmXZrnujvcLsRgpparvcF9In/35iPkAMdsPz84fbrSE8J7rrP8ORrptdvD/8mit6wH37X6ZrEJUeyLZNjuF8O9cbV2zL9Jts8scfp/rIt02u1if2zdvc19In/35iukAMdsPz+4fbjSE8J5rgXqrMJPTOl7q9mPqmYMpYxsL7+mOQvzsvmLVfHfGyWe7GnBZ97ti4T3D1Pt13eZuWz/7MR0gmP2HF4tfLLO9J2fAOZd1vNQ5gL6A4/yZFyilqq1ftFhxx39nq9fwE4DW+pAt5XsjL5TfV3+v2Bkj73k2s372FyLWA8RsPzxbf7hRcsf3pLU+HFDWtRpoiFTDoiwv2g0Is9k+u7uAfGuYKVaGT2f7bDdieg79M64T8xTrAULchtX9boyRv7LcTAcAB9AbeGcM9h5C1ev/942leYjbUUo5MJ+FPwGvKaVioXc8mzt+9hcq1gPEbD88W3+4URLqe6rVWr8cmSbZ7nWmh8qcQD1MfWGAGYPfZ01c5sXI2PRs/869TI9buzE9iqVutvdcB/xJa30IeBGI2aAY8NkO+tkPl1gPELN9cdj6w42S2d4zSqk665eIWJikDvgruRZwB/SKjln3H7Ema8F8scSC2f6djwTc78Caj1jiZv1s+1n/3u6Z55ciq/dXM6MX6P9s3+6zH57XjvWNctZfjS7MpNVh69xxrfXO292/1N3pPQcsmevD/DX2fJwOvyx5IX62+4BdsdJbDOE9v2Tdnxcrv8/RFPMBQgghxPzE+hCTEEKIeZIAIYQQIigJEEIIIYKSACGEECIoCRAiJimlHEqplrleq5RyWjtx73R9tVLquFLqeDjaKsRiJQFCiABaaxewepbLDgK7/UsrZxNqZtFYykAqYoMECCFm0FrPtsHKGcI1gQ6E+TohIkIChIhleUqpV5VSLUqpV/0nlVIvWeeOztyFO3Noaua1Vg0NpzXE9Itd6NYQ1VHrMcet1/UPSR20rnnTOp56/dtcd9t2ChEJSdFugBA2e1lr7Q74QvfvLK60krkdBILuMrZyNv3sWq31ASvlwe7b9CIOAK9qrY8opRzWa9cGDkdprZ+3nn8f8IrVxgOB1wV7bWb0MKygcRCTdsKNSanhAt6U3fEiHCRAiFjWF/Al/irT1eScSqmjITx+/xyu9TsKvKmU2mW95i+CiBWoDmC+2O9UCGa213ZagaVOa33YCjASGETYSIAQ8aQXU0PgTwHJ+4Imewvws2tno7WuV0rtxGQSPQ7kBt5v9QxeBp7HBIhX5vvaAYnZKq3/x0N6axFBMgchYllgkaDnMdk/XydgqGaW1N9zudZ/jVNr7bKy5Tb4axRY8xcOoAZTh8Nt3Q4UeF1Irx1YOQ4IaVWVEKGSACFimjVJfRyrOJL1V7d/kvg4v/ySnjKXawPUWte3YOojuzGB6ThmvuANYJ/1fHtmPHbqujm89p6AXkasVc0TUSbZXIUQQgQlPQghhBBBSYAQQggRlAQIIYQQQUmAEEIIEZQECCGEEEFJgBBCCBGUBAghhBBBSYAQQggR1P8P3mENvFCABbUAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -304,8 +290,8 @@ "source": [ "fig, ax = plt.subplots()\n", "\n", - "ax.plot(sp2.π_grid, ψ_2, lw=2, alpha=0.6, label='$c = 0.2$')\n", - "ax.plot(sp1.π_grid, ψ_1, lw=2, alpha=0.6, label='$c = 0.1$')\n", + "ax.plot(sp2.π_grid, ω_2, lw=2, alpha=0.6, label='$c = 0.2$')\n", + "ax.plot(sp1.π_grid, ω_1, lw=2, alpha=0.6, label='$c = 0.1$')\n", "\n", "ax.legend(fontsize=14)\n", "ax.set_xlabel(\"belief state $\\\\pi$\", fontsize=12)\n", @@ -313,6 +299,13 @@ "plt.show()" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -337,7 +330,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.4" } }, "nbformat": 4,