-
Notifications
You must be signed in to change notification settings - Fork 156
/
Copy pathtrain_model_extractiveQA.py
412 lines (370 loc) · 15.9 KB
/
train_model_extractiveQA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import random
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torch import nn
from transformers import AutoTokenizer, AutoConfig
from transformers import BertPreTrainedModel, BertModel
from transformers import AdamW, get_scheduler
import json
import collections
import sys
from tqdm.auto import tqdm
sys.path.append('./')
from data.cmrc2018.cmrc2018_evaluate import evaluate
max_length = 384
stride = 128
n_best = 20
max_answer_length = 30
batch_size = 4
learning_rate = 1e-5
epoch_num = 3
def seed_everything(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
seed_everything(7)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using {device} device')
class CMRC2018(Dataset):
def __init__(self, data_file):
self.data = self.load_data(data_file)
def load_data(self, data_file):
Data = {}
with open(data_file, 'r', encoding='utf-8') as f:
json_data = json.load(f)
idx = 0
for article in json_data['data']:
title = article['title']
context = article['paragraphs'][0]['context']
for question in article['paragraphs'][0]['qas']:
q_id = question['id']
ques = question['question']
text = [ans['text'] for ans in question['answers']]
answer_start = [ans['answer_start'] for ans in question['answers']]
Data[idx] = {
'id': q_id,
'title': title,
'context': context,
'question': ques,
'answers': {
'text': text,
'answer_start': answer_start
}
}
idx += 1
return Data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
train_data = CMRC2018('data/cmrc2018/cmrc2018_train.json')
valid_data = CMRC2018('data/cmrc2018/cmrc2018_dev.json')
test_data = CMRC2018('data/cmrc2018/cmrc2018_trial.json')
checkpoint = 'bert-base-chinese'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def train_collote_fn(batch_samples):
batch_question, batch_context, batch_answers = [], [], []
for sample in batch_samples:
batch_question.append(sample['question'])
batch_context.append(sample['context'])
batch_answers.append(sample['answers'])
batch_data = tokenizer(
batch_question,
batch_context,
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding='max_length',
return_tensors="pt"
)
offset_mapping = batch_data.pop('offset_mapping')
sample_mapping = batch_data.pop('overflow_to_sample_mapping')
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
sample_idx = sample_mapping[i]
answer = batch_answers[sample_idx]
start_char = answer['answer_start'][0]
end_char = answer['answer_start'][0] + len(answer['text'][0])
sequence_ids = batch_data.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label is (0, 0)
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
return batch_data, torch.tensor(start_positions), torch.tensor(end_positions)
def test_collote_fn(batch_samples):
batch_id, batch_question, batch_context = [], [], []
for sample in batch_samples:
batch_id.append(sample['id'])
batch_question.append(sample['question'])
batch_context.append(sample['context'])
batch_data = tokenizer(
batch_question,
batch_context,
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
return_tensors="pt"
)
offset_mapping = batch_data.pop('offset_mapping').numpy().tolist()
sample_mapping = batch_data.pop('overflow_to_sample_mapping')
example_ids = []
for i in range(len(batch_data['input_ids'])):
sample_idx = sample_mapping[i]
example_ids.append(batch_id[sample_idx])
sequence_ids = batch_data.sequence_ids(i)
offset = offset_mapping[i]
offset_mapping[i] = [
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
]
return batch_data, offset_mapping, example_ids
train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=train_collote_fn)
valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False, collate_fn=test_collote_fn)
test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=False, collate_fn=test_collote_fn)
print('train set size: ', )
print(len(train_data), '->', sum([batch_data['input_ids'].shape[0] for batch_data, _, _ in train_dataloader]))
print('valid set size: ')
print(len(valid_data), '->', sum([batch_data['input_ids'].shape[0] for batch_data, _, _ in valid_dataloader]))
print('test set size: ')
print(len(test_data), '->', sum([batch_data['input_ids'].shape[0] for batch_data, _, _ in test_dataloader]))
class BertForExtractiveQA(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.post_init()
def forward(self, x):
bert_output = self.bert(**x)
sequence_output = bert_output.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
return start_logits, end_logits
config = AutoConfig.from_pretrained(checkpoint)
config.num_labels = 2
model = BertForExtractiveQA.from_pretrained(checkpoint, config=config).to(device)
def train_loop(dataloader, model, loss_fn, optimizer, lr_scheduler, epoch, total_loss):
progress_bar = tqdm(range(len(dataloader)))
progress_bar.set_description(f'loss: {0:>7f}')
finish_batch_num = (epoch-1) * len(dataloader)
model.train()
for batch, (X, start_pos, end_pos) in enumerate(dataloader, start=1):
X, start_pos, end_pos = X.to(device), start_pos.to(device), end_pos.to(device)
start_pred, end_pred = model(X)
start_loss = loss_fn(start_pred, start_pos)
end_loss = loss_fn(end_pred, end_pos)
loss = (start_loss + end_loss) / 2
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
total_loss += loss.item()
progress_bar.set_description(f'loss: {total_loss/(finish_batch_num + batch):>7f}')
progress_bar.update(1)
return total_loss
def test_loop(dataloader, dataset, model):
all_example_ids = []
all_offset_mapping = []
for _, offset_mapping, example_ids in dataloader:
all_example_ids += example_ids
all_offset_mapping += offset_mapping
example_to_features = collections.defaultdict(list)
for idx, feature_id in enumerate(all_example_ids):
example_to_features[feature_id].append(idx)
start_logits = []
end_logits = []
model.eval()
for batch_data, _, _ in tqdm(dataloader):
batch_data = batch_data.to(device)
with torch.no_grad():
pred_start_logits, pred_end_logit = model(batch_data)
start_logits.append(pred_start_logits.cpu().numpy())
end_logits.append(pred_end_logit.cpu().numpy())
start_logits = np.concatenate(start_logits)
end_logits = np.concatenate(end_logits)
theoretical_answers = [
{"id": dataset[s_idx]["id"], "answers": dataset[s_idx]["answers"]} for s_idx in range(len(dataset))
]
predicted_answers = []
for s_idx in tqdm(range(len(dataset))):
example_id = dataset[s_idx]["id"]
context = dataset[s_idx]["context"]
answers = []
# Loop through all features associated with that example
for feature_index in example_to_features[example_id]:
start_logit = start_logits[feature_index]
end_logit = end_logits[feature_index]
offsets = all_offset_mapping[feature_index]
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
if offsets[start_index] is None or offsets[end_index] is None:
continue
if (end_index < start_index or end_index-start_index+1 > max_answer_length):
continue
answers.append({
"start": offsets[start_index][0],
"text": context[offsets[start_index][0] : offsets[end_index][1]],
"logit_score": start_logit[start_index] + end_logit[end_index],
})
# Select the answer with the best score
if len(answers) > 0:
best_answer = max(answers, key=lambda x: x["logit_score"])
predicted_answers.append({
"id": example_id,
"prediction_text": best_answer["text"],
"answer_start": best_answer["start"]
})
else:
predicted_answers.append({
"id": example_id,
"prediction_text": "",
"answer_start": 0
})
result = evaluate(predicted_answers, theoretical_answers)
print(f"F1: {result['f1']:>0.2f} EM: {result['em']:>0.2f} AVG: {result['avg']:>0.2f}\n")
return result
loss_fn = nn.CrossEntropyLoss()
optimizer = AdamW(model.parameters(), lr=learning_rate)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=epoch_num*len(train_dataloader),
)
total_loss = 0.
best_avg_score = 0.
for t in range(epoch_num):
print(f"Epoch {t+1}/{epoch_num}\n-------------------------------")
total_loss = train_loop(train_dataloader, model, loss_fn, optimizer, lr_scheduler, t+1, total_loss)
valid_scores = test_loop(valid_dataloader, valid_data, model)
avg_score = valid_scores['avg']
if avg_score > best_avg_score:
best_avg_score = avg_score
print('saving new weights...\n')
torch.save(model.state_dict(), f'epoch_{t+1}_valid_avg_{avg_score:0.4f}_model_weights.bin')
print("Done!")
# model.load_state_dict(torch.load('epoch_2_valid_avg_75.2441_model_weights.bin'))
# model.eval()
# with torch.no_grad():
# print('evaluating on test set...')
# all_example_ids = []
# all_offset_mapping = []
# for _, offset_mapping, example_ids in test_dataloader:
# all_example_ids += example_ids
# all_offset_mapping += offset_mapping
# example_to_features = collections.defaultdict(list)
# for idx, feature_id in enumerate(all_example_ids):
# example_to_features[feature_id].append(idx)
# start_logits = []
# end_logits = []
# model.eval()
# for batch_data, _, _ in tqdm(test_dataloader):
# batch_data = batch_data.to(device)
# pred_start_logits, pred_end_logit = model(batch_data)
# start_logits.append(pred_start_logits.cpu().numpy())
# end_logits.append(pred_end_logit.cpu().numpy())
# start_logits = np.concatenate(start_logits)
# end_logits = np.concatenate(end_logits)
# theoretical_answers = [
# {"id": test_data[s_idx]["id"], "answers": test_data[s_idx]["answers"]} for s_idx in range(len(test_dataloader))
# ]
# predicted_answers = []
# save_resluts = []
# for s_idx in tqdm(range(len(test_data))):
# example_id = test_data[s_idx]["id"]
# context = test_data[s_idx]["context"]
# title = test_data[s_idx]["title"]
# question = test_data[s_idx]["question"]
# labels = test_data[s_idx]["answers"]
# answers = []
# # Loop through all features associated with that example
# for feature_index in example_to_features[example_id]:
# start_logit = start_logits[feature_index]
# end_logit = end_logits[feature_index]
# offsets = all_offset_mapping[feature_index]
# start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
# end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
# for start_index in start_indexes:
# for end_index in end_indexes:
# if offsets[start_index] is None or offsets[end_index] is None:
# continue
# if (end_index < start_index or end_index-start_index+1 > max_answer_length):
# continue
# answers.append({
# "start": offsets[start_index][0],
# "text": context[offsets[start_index][0] : offsets[end_index][1]],
# "logit_score": start_logit[start_index] + end_logit[end_index],
# })
# # Select the answer with the best score
# if len(answers) > 0:
# best_answer = max(answers, key=lambda x: x["logit_score"])
# predicted_answers.append({
# "id": example_id,
# "prediction_text": best_answer["text"],
# "answer_start": best_answer["start"]
# })
# save_resluts.append({
# "id": example_id,
# "title": title,
# "context": context,
# "question": question,
# "answers": labels,
# "prediction_text": best_answer["text"],
# "answer_start": best_answer["start"]
# })
# else:
# predicted_answers.append({
# "id": example_id,
# "prediction_text": "",
# "answer_start": 0
# })
# save_resluts.append({
# "id": example_id,
# "title": title,
# "context": context,
# "question": question,
# "answers": labels,
# "prediction_text": "",
# "answer_start": 0
# })
# eval_result = evaluate(predicted_answers, theoretical_answers)
# print(f"F1: {eval_result['f1']:>0.2f} EM: {eval_result['em']:>0.2f} AVG: {eval_result['avg']:>0.2f}\n")
# print('saving predicted results...')
# with open('test_data_pred.json', 'wt', encoding='utf-8') as f:
# for example_result in save_resluts:
# f.write(json.dumps(example_result, ensure_ascii=False) + '\n')