-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathex5_2_lstm_airplane.py
123 lines (94 loc) · 3.37 KB
/
ex5_2_lstm_airplane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from keras import models, layers
import seaborn as sns
from keraspp import skeras
def main():
machine = Machine()
machine.run(epochs=400)
class Machine():
def __init__(self):
self.data = Dataset()
shape = self.data.X.shape[1:]
self.model = rnn_model(shape)
def run(self, epochs=400):
d = self.data
X_train, X_test, y_train, y_test = d.X_train, d.X_test, d.y_train, d.y_test
X, y = d.X, d.y
m = self.model
h = m.fit(X_train, y_train, epochs=epochs, validation_data=[X_test, y_test], verbose=0)
skeras.plot_loss(h)
plt.title('History of training')
plt.show()
yp = m.predict(X_test)
print('Loss:', m.evaluate(X_test, y_test))
plt.plot(yp, label='Origial')
plt.plot(y_test, label='Prediction')
plt.legend(loc=0)
plt.title('Validation Results')
plt.show()
yp = m.predict(X_test).reshape(-1)
print('Loss:', m.evaluate(X_test, y_test))
print(yp.shape, y_test.shape)
df = pd.DataFrame()
df['Sample'] = list(range(len(y_test))) * 2
df['Normalized #Passengers'] = np.concatenate([y_test, yp], axis=0)
df['Type'] = ['Original'] * len(y_test) + ['Prediction'] * len(yp)
plt.figure(figsize=(7, 5))
sns.barplot(x="Sample", y="Normalized #Passengers",
hue="Type", data=df)
plt.ylabel('Normalized #Passengers')
plt.show()
yp = m.predict(X)
plt.plot(yp, label='Origial')
plt.plot(y, label='Prediction')
plt.legend(loc=0)
plt.title('All Results')
plt.show()
def rnn_model(shape):
m_x = layers.Input(shape=shape) #X.shape[1:]
m_h = layers.LSTM(10)(m_x)
m_y = layers.Dense(1)(m_h)
m = models.Model(m_x, m_y)
m.compile('adam', 'mean_squared_error')
m.summary()
return m
class Dataset:
def __init__(self, fname='international-airline-passengers.csv', D=12):
data_dn = load_data(fname=fname)
X, y = get_Xy(data_dn, D=D)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=42)
self.X, self.y = X, y
self.X_train, self.X_test, self.y_train, self.y_test = X_train, X_test, y_train, y_test
def load_data(fname='international-airline-passengers.csv'):
dataset = pd.read_csv(fname, usecols=[1], engine='python', skipfooter=3)
data = dataset.values.reshape(-1)
plt.plot(data)
plt.xlabel('Time'); plt.ylabel('#Passengers')
plt.title('Original Data')
plt.show()
# data normalize
data_dn = (data - np.mean(data)) / np.std(data) / 5
plt.plot(data_dn)
plt.xlabel('Time'); plt.ylabel('Normalized #Passengers')
plt.title('Normalized data by $E[]$ and $5\sigma$')
plt.show()
return data_dn
def get_Xy(data, D=12):
# make X and y
X_l = []
y_l = []
N = len(data)
assert N > D, "N should be larger than D, where N is len(data)"
for ii in range(N-D-1):
X_l.append(data[ii:ii+D])
y_l.append(data[ii+D])
X = np.array(X_l)
X = X.reshape(X.shape[0], X.shape[1], 1)
y = np.array(y_l)
print(X.shape, y.shape)
return X, y
if __name__ == '__main__':
main()