forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path13_2_rnn_classification.py
212 lines (160 loc) · 6.5 KB
/
13_2_rnn_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Original code is from https://github.com/spro/practical-pytorch
import time
import math
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from name_dataset import NameDataset
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
# Parameters and DataLoaders
HIDDEN_SIZE = 100
N_LAYERS = 2
BATCH_SIZE = 256
N_EPOCHS = 100
test_dataset = NameDataset(is_train_set=False)
test_loader = DataLoader(dataset=test_dataset,
batch_size=BATCH_SIZE, shuffle=True)
train_dataset = NameDataset(is_train_set=True)
train_loader = DataLoader(dataset=train_dataset,
batch_size=BATCH_SIZE, shuffle=True)
N_COUNTRIES = len(train_dataset.get_countries())
print(N_COUNTRIES, "countries")
N_CHARS = 128 # ASCII
# Some utility functions
def time_since(since):
s = time.time() - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def create_variable(tensor):
# Do cuda() before wrapping with variable
if torch.cuda.is_available():
return Variable(tensor.cuda())
else:
return Variable(tensor)
# pad sequences and sort the tensor
def pad_sequences(vectorized_seqs, seq_lengths, countries):
seq_tensor = torch.zeros((len(vectorized_seqs), seq_lengths.max())).long()
for idx, (seq, seq_len) in enumerate(zip(vectorized_seqs, seq_lengths)):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
# Sort tensors by their length
seq_lengths, perm_idx = seq_lengths.sort(0, descending=True)
seq_tensor = seq_tensor[perm_idx]
# Also sort the target (countries) in the same order
target = countries2tensor(countries)
if len(countries):
target = target[perm_idx]
# Return variables
# DataParallel requires everything to be a Variable
return create_variable(seq_tensor), \
create_variable(seq_lengths), \
create_variable(target)
# Create necessary variables, lengths, and target
def make_variables(names, countries):
sequence_and_length = [str2ascii_arr(name) for name in names]
vectorized_seqs = [sl[0] for sl in sequence_and_length]
seq_lengths = torch.LongTensor([sl[1] for sl in sequence_and_length])
return pad_sequences(vectorized_seqs, seq_lengths, countries)
def str2ascii_arr(msg):
arr = [ord(c) for c in msg]
return arr, len(arr)
def countries2tensor(countries):
country_ids = [train_dataset.get_country_id(
country) for country in countries]
return torch.LongTensor(country_ids)
class RNNClassifier(nn.Module):
# Our model
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = int(bidirectional) + 1
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
bidirectional=bidirectional)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, input, seq_lengths):
# Note: we run this all at once (over the whole input sequence)
# input shape: B x S (input size)
# transpose to make S(sequence) x B (batch)
input = input.t()
batch_size = input.size(1)
# Make a hidden
hidden = self._init_hidden(batch_size)
# Embedding S x B -> S x B x I (embedding size)
embedded = self.embedding(input)
# Pack them up nicely
gru_input = pack_padded_sequence(
embedded, seq_lengths.data.cpu().numpy())
# To compact weights again call flatten_parameters().
self.gru.flatten_parameters()
output, hidden = self.gru(gru_input, hidden)
# Use the last layer output as FC's input
# No need to unpack, since we are going to use hidden
fc_output = self.fc(hidden[-1])
return fc_output
def _init_hidden(self, batch_size):
hidden = torch.zeros(self.n_layers * self.n_directions,
batch_size, self.hidden_size)
return create_variable(hidden)
# Train cycle
def train():
total_loss = 0
for i, (names, countries) in enumerate(train_loader, 1):
input, seq_lengths, target = make_variables(names, countries)
output = classifier(input, seq_lengths)
loss = criterion(output, target)
total_loss += loss.data[0]
classifier.zero_grad()
loss.backward()
optimizer.step()
if i % 10 == 0:
print('[{}] Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.2f}'.format(
time_since(start), epoch, i *
len(names), len(train_loader.dataset),
100. * i * len(names) / len(train_loader.dataset),
total_loss / i * len(names)))
return total_loss
# Testing cycle
def test(name=None):
# Predict for a given name
if name:
input, seq_lengths, target = make_variables([name], [])
output = classifier(input, seq_lengths)
pred = output.data.max(1, keepdim=True)[1]
country_id = pred.cpu().numpy()[0][0]
print(name, "is", train_dataset.get_country(country_id))
return
print("evaluating trained model ...")
correct = 0
train_data_size = len(test_loader.dataset)
for names, countries in test_loader:
input, seq_lengths, target = make_variables(names, countries)
output = classifier(input, seq_lengths)
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'.format(
correct, train_data_size, 100. * correct / train_data_size))
if __name__ == '__main__':
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRIES, N_LAYERS)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [33, xxx] -> [11, ...], [11, ...], [11, ...] on 3 GPUs
classifier = nn.DataParallel(classifier)
if torch.cuda.is_available():
classifier.cuda()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
start = time.time()
print("Training for %d epochs..." % N_EPOCHS)
for epoch in range(1, N_EPOCHS + 1):
# Train cycle
train()
# Testing
test()
# Testing several samples
test("Sung")
test("Jungwoo")
test("Soojin")
test("Nako")