-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathInductionLecture.agda
46 lines (38 loc) · 1.31 KB
/
InductionLecture.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
module InductionLecture where
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong)
open Relation.Binary.PropositionalEquality.≡-Reasoning using (begin_; _≡⟨_⟩_; _∎)
open import Data.Nat.Solver using (module +-*-Solver)
open +-*-Solver
open import NaturalsLecture
{-
January 13, 2020, Part 2
-}
dub : ℕ → ℕ
dub zero = 0
dub (suc n) = suc (suc (dub n))
dub-correct : (n : ℕ) → dub n ≡ n + n
dub-correct zero = refl
dub-correct (suc n) =
let IH = dub-correct n in
begin
suc (suc (dub n)) ≡⟨ cong suc (cong suc IH) ⟩
suc (suc (n + n)) ≡⟨ cong suc (sym (+-suc n n)) ⟩
suc (n + suc n)
∎
gauss-formula : (n : ℕ) → 2 * gauss n ≡ n * suc n
gauss-formula zero = refl
gauss-formula (suc n) =
let IH : 2 * gauss n ≡ n * suc n
IH = gauss-formula n in
begin
2 * gauss (suc n) ≡⟨ refl ⟩
2 * (suc n + gauss n) ≡⟨ *-distribˡ-+ 2 (suc n) (gauss n) ⟩
2 * (suc n) + 2 * gauss n ≡⟨ cong (λ □ → 2 * (suc n) + □) IH ⟩
2 * (suc n) + (n * suc n) ≡⟨ EQ n ⟩
(suc n) * suc (suc n)
∎
where
EQ = solve 1 (λ n → (con 2 :* (con 1 :+ n)) :+ (n :* (con 1 :+ n))
:= (con 1 :+ n) :* (con 1 :+ (con 1 :+ n))) refl