-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvector3d.h
140 lines (120 loc) · 2.46 KB
/
vector3d.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#ifndef vec3_h
#define vec3_h
#include <cmath>
class vec3
{
public:
// Data
double x, y, z;
// Ctors
vec3( double InX, double InY, double InZ ) : x( InX ), y( InY ), z( InZ )
{
}
void SetDoublePoint( const double *v ) { x=v[0]; y=v[1]; z=v[2]; }
vec3( ) : x(0), y(0), z(0)
{
}
// Operator Overloads
inline bool operator== (const vec3& V2) const
{
return (x == V2.x && y == V2.y && z == V2.z);
}
inline vec3 operator+ (const vec3& V2) const
{
return vec3( x + V2.x, y + V2.y, z + V2.z);
}
inline vec3 operator- (const vec3& V2) const
{
return vec3( x - V2.x, y - V2.y, z - V2.z);
}
inline vec3 SubP(const double *v) const
{
return vec3( x - v[0], y - v[1], z - v[2]);
}
inline vec3 operator- ( ) const
{
return vec3(-x, -y, -z);
}
inline vec3 operator/ (double S ) const
{
double fInv = 1.0 / S;
return vec3 (x * fInv , y * fInv, z * fInv);
}
inline vec3 operator/ (const vec3& V2) const
{
return vec3 (x / V2.x, y / V2.y, z / V2.z);
}
inline vec3 operator* (const vec3& V2) const
{
return vec3 (x * V2.x, y * V2.y, z * V2.z);
}
inline vec3 operator* (double S) const
{
return vec3 (x * S, y * S, z * S);
}
inline vec3 operator+ (double S) const
{
return vec3 (x + S, y + S, z + S);
}
inline vec3 operator- (double S) const
{
return vec3 (x - S, y - S, z - S);
}
inline void operator+= ( const vec3& V2 )
{
x += V2.x;
y += V2.y;
z += V2.z;
}
inline void operator-= ( const vec3& V2 )
{
x -= V2.x;
y -= V2.y;
z -= V2.z;
}
inline double operator[] ( int i )
{
if ( i == 0 ) return x;
else if ( i == 1 ) return y;
else return z;
}
// Functions
inline double Dot( const vec3 &V1 ) const
{
return V1.x*x + V1.y*y + V1.z*z;
}
// These require math.h for the sqrt function
double Magnitude( ) const
{
return sqrt( x*x + y*y + z*z );
}
inline void Normalize()
{
double fMag = ( x*x + y*y + z*z );
if (fMag == 0) {return;}
double fMult = 1.0/sqrt(fMag);
x *= fMult;
y *= fMult;
z *= fMult;
return;
}
};
inline vec3 SubtractDoubleDouble(const double *d1, const double *d2)
{
return vec3(d1[0]-d2[0], d1[1]-d2[1], d1[2]-d2[2]);
}
inline double clamp(double d, double min, double max)
{
if (d < min)
return min;
if (d > max)
return max;
return d;
}
inline void clamp(vec3 &v, double min, double max)
{
v.x = clamp(v.x,min,max);
v.y = clamp(v.y,min,max);
v.z = clamp(v.z,min,max);
}
#endif