-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_rev1.py
107 lines (73 loc) · 2.84 KB
/
rnn_rev1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 15 09:35:02 2018
@author: Rachid
"""
# Predict the trend for google stock in the future
###................... Build RNN ..............###
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset_train = pd.read_csv("Google_Stock_Price_Train.csv")
# get an array of the 'open' columns
training_set = dataset_train[['Open']].values
# feature scaling (with Normalization)
from sklearn.preprocessing import MinMaxScaler
sc= MinMaxScaler(feature_range=(0,1))
training_set_scaled = sc.fit_transform(training_set)
# Creation of neural structure with 60 timestamps and 1 output
X_train = []
y_train = []
for i in range(60,1258):
X_train.append(training_set_scaled[i-60:i,0])
y_train.append(training_set_scaled[i, 0])
X_train = np.array(X_train)
y_train = np.array(y_train)
# Reshaping
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
# Librairies Keras
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
# Initialization
regressor = Sequential()
# LSTM & dropout Layers
regressor.add(LSTM(units=100, return_sequences=True, input_shape=(X_train.shape[1], 1)))
regressor.add(Dropout(0.3))
regressor.add(LSTM(units=100, return_sequences=True))
regressor.add(Dropout(0.3))
regressor.add(LSTM(units=100, return_sequences=True))
regressor.add(Dropout(0.3))
regressor.add(LSTM(units=100, return_sequences=False))
regressor.add(Dropout(0.3))
# Output layer
regressor.add(Dense(units=1))
# Compile
regressor.compile(optimizer='rmsprop', loss='mean_squared_error')
# Training
regressor.fit(X_train, y_train, epochs=100, batch_size=16)
###............... Prediction .............###
dataset_test = pd.read_csv("Google_Stock_Price_Test.csv")
# get an array of the 'open' columns
real_stock_price = dataset_test[['Open']].values
# Predictions for January 2017
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis=0)
inputs = dataset_total[len(dataset_total)-len(dataset_test)-60:].values.reshape(-1,1)
# feature scaling of inputs (transform, because it already trained in the beginning)
inputs = sc.transform(inputs)
# Reshaping
X_test = []
for i in range(60,80):
X_test.append(inputs[i-60:i,0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# Prediction
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
# Visualization
plt.plot(real_stock_price, color = 'red', label = 'Real Google Stock Price')
plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted Google Stock Price')
plt.title('Google Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Google Stock Price')
plt.legend()
plt.show()