forked from MITDeepLearning/introtodeeplearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
76 lines (55 loc) · 1.75 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import matplotlib.pyplot as plt
import tensorflow as tf
import time
import numpy as np
from IPython import display as ipythondisplay
from string import Formatter
def display_model(model):
tf.keras.utils.plot_model(model,
to_file='tmp.png',
show_shapes=True)
return ipythondisplay.Image('tmp.png')
def plot_sample(x,y,vae):
plt.figure(figsize=(2,1))
plt.subplot(1, 2, 1)
idx = np.where(y==1)[0][0]
plt.imshow(x[idx])
plt.grid(False)
plt.subplot(1, 2, 2)
_, _, _, recon = vae(x)
recon = np.clip(recon, 0, 1)
plt.imshow(recon[idx])
plt.grid(False)
plt.show()
class LossHistory:
def __init__(self, smoothing_factor=0.0):
self.alpha = smoothing_factor
self.loss = []
def append(self, value):
self.loss.append( self.alpha*self.loss[-1] + (1-self.alpha)*value if len(self.loss)>0 else value )
def get(self):
return self.loss
class PeriodicPlotter:
def __init__(self, sec, xlabel='', ylabel='', scale=None):
self.xlabel = xlabel
self.ylabel = ylabel
self.sec = sec
self.scale = scale
self.tic = time.time()
def plot(self, data):
if time.time() - self.tic > self.sec:
plt.cla()
if self.scale is None:
plt.plot(data)
elif self.scale == 'semilogx':
plt.semilogx(data)
elif self.scale == 'semilogy':
plt.semilogy(data)
elif self.scale == 'loglog':
plt.loglog(data)
else:
raise ValueError("unrecognized parameter scale {}".format(self.scale))
plt.xlabel(self.xlabel); plt.ylabel(self.ylabel)
ipythondisplay.clear_output(wait=True)
ipythondisplay.display(plt.gcf())
self.tic = time.time()