forked from MITDeepLearning/introtodeeplearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab1.py
87 lines (72 loc) · 3.14 KB
/
lab1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import regex as re
import subprocess
import urllib
import numpy as np
import tensorflow as tf
from IPython.display import Audio
cwd = os.path.dirname(__file__)
def load_training_data():
with open(os.path.join(cwd, "data", "irish.abc"), "r") as f:
text = f.read()
songs = extract_song_snippet(text)
return songs
def extract_song_snippet(text):
pattern = '(^|\n\n)(.*?)\n\n'
search_results = re.findall(pattern, text, overlapped=True, flags=re.DOTALL)
songs = [song[1] for song in search_results]
print("Found {} songs in text".format(len(songs)))
return songs
def save_song_to_abc(song, filename="tmp"):
save_name = "{}.abc".format(filename)
with open(save_name, "w") as f:
f.write(song)
return filename
def abc2wav(abc_file):
path_to_tool = os.path.join(cwd, 'bin', 'abc2wav')
cmd = "{} {}".format(path_to_tool, abc_file)
return os.system(cmd)
def play_wav(wav_file):
return Audio(wav_file)
def play_song(song):
basename = save_song_to_abc(song)
ret = abc2wav(basename+'.abc')
if ret == 0: #did not suceed
return play_wav(basename+'.wav')
return None
def play_generated_song(generated_text):
songs = extract_song_snippet(generated_text)
if len(songs) == 0:
print("No valid songs found in generated text. Try training the \
model longer or increasing the amount of generated music to \
ensure complete songs are generated!")
for song in songs:
play_song(song)
print("None of the songs were valid, try training longer to improve \
syntax.")
def test_batch_func_types(func, args):
ret = func(*args)
assert len(ret) == 2, "[FAIL] get_batch must return two arguments (input and label)"
assert type(ret[0]) == np.ndarray, "[FAIL] test_batch_func_types: x is not np.array"
assert type(ret[1]) == np.ndarray, "[FAIL] test_batch_func_types: y is not np.array"
print("[PASS] test_batch_func_types")
return True
def test_batch_func_shapes(func, args):
dataset, seq_length, batch_size = args
x, y = func(*args)
correct = (batch_size, seq_length)
assert x.shape == correct, "[FAIL] test_batch_func_shapes: x {} is not correct shape {}".format(x.shape, correct)
assert y.shape == correct, "[FAIL] test_batch_func_shapes: y {} is not correct shape {}".format(y.shape, correct)
print("[PASS] test_batch_func_shapes")
return True
def test_batch_func_next_step(func, args):
x, y = func(*args)
assert (x[:,1:] == y[:,:-1]).all(), "[FAIL] test_batch_func_next_step: x_{t} must equal y_{t-1} for all t"
print("[PASS] test_batch_func_next_step")
return True
def test_custom_dense_layer_output(y):
true_y = np.array([[0.2697859, 0.45750418, 0.66536945]],dtype='float32')
assert tf.shape(y).numpy().tolist() == list(true_y.shape), "[FAIL] output is of incorrect shape. expected {} but got {}".format(true_y.shape, y.numpy().shape)
np.testing.assert_almost_equal(y.numpy(), true_y, decimal=7, err_msg="[FAIL] output is of incorrect value. expected {} but got {}".format(y.numpy(), true_y), verbose=True)
print("[PASS] test_custom_dense_layer_output")
return True