-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.tex
478 lines (386 loc) · 14.6 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
\pdfminorversion=4
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
{
\usetheme{default}
\usecolortheme{default}
\usefonttheme{default}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{caption}[numbered]
\setbeamertemplate{footline}[frame number] % or "page number"
\setbeamercolor{frametitle}{fg=white}
\setbeamercolor{footline}{fg=black}
}
\usepackage[english]{babel}
\usepackage{inputenc}
\usepackage{tikz}
\usepackage{courier}
\usepackage{array}
\usepackage{bold-extra}
\usepackage{minted}
\usepackage[thicklines]{cancel}
\usepackage{fancyvrb}
\xdefinecolor{dianablue}{rgb}{0.18,0.24,0.31}
\xdefinecolor{darkblue}{rgb}{0.1,0.1,0.7}
\xdefinecolor{darkgreen}{rgb}{0,0.5,0}
\xdefinecolor{darkgrey}{rgb}{0.35,0.35,0.35}
\xdefinecolor{darkorange}{rgb}{0.8,0.5,0}
\xdefinecolor{darkred}{rgb}{0.7,0,0}
\definecolor{darkgreen}{rgb}{0,0.6,0}
\definecolor{mauve}{rgb}{0.58,0,0.82}
\title[2024-10-23-chep2024-gil-free-uproot]{GIL-free scaling of Uproot in Python 3.13}
\author{Jim Pivarski}
\institute{Princeton University -- IRIS-HEP}
\date{October 23, 2024}
\usetikzlibrary{shapes.callouts}
\begin{document}
\logo{\pgfputat{\pgfxy(0.11, 7.4)}{\pgfbox[right,base]{\tikz{\filldraw[fill=dianablue, draw=none] (0 cm, 0 cm) rectangle (50 cm, 1 cm);}\mbox{\hspace{-8 cm}\includegraphics[height=1 cm]{princeton-logo-long.png}\hspace{0.1 cm}\raisebox{0.1 cm}{\includegraphics[height=0.8 cm]{iris-hep-logo-long.png}}\hspace{0.1 cm}}}}}
\begin{frame}
\titlepage
\end{frame}
\logo{\pgfputat{\pgfxy(0.11, 7.4)}{\pgfbox[right,base]{\tikz{\filldraw[fill=dianablue, draw=none] (0 cm, 0 cm) rectangle (50 cm, 1 cm);}\mbox{\hspace{-8 cm}\includegraphics[height=1 cm]{princeton-logo.png}\hspace{0.1 cm}\raisebox{0.1 cm}{\includegraphics[height=0.8 cm]{iris-hep-logo.png}}\hspace{0.1 cm}}}}}
% Uncomment these lines for an automatically generated outline.
%\begin{frame}{Outline}
% \tableofcontents
%\end{frame}
% START START START START START START START START START START START START START
\begin{frame}[fragile]{What is Python's Global Interpreter Lock (GIL)?}
\Large
\vspace{0.5 cm}
\begin{onlyenv}<1>
\begin{center}
\includegraphics[height=5 cm]{img/python-gil-meme-1.jpg}
\end{center}
\end{onlyenv}\begin{onlyenv}<2>
\begin{center}
\includegraphics[height=5 cm]{img/python-gil-meme-2.jpg}
\end{center}
\end{onlyenv}\begin{onlyenv}<3>
\begin{center}
\includegraphics[height=5 cm]{img/python-gil-meme-3.png}
\end{center}
\end{onlyenv}\begin{onlyenv}<4>
\hspace{-0.25 cm}\textcolor{darkblue}{In pseudocode:}
\vspace{0.5 cm}
\begin{minted}{c}
pthread_mutex_lock(&global_interpreter_lock);
PyEval(python_bytecode_instruction);
pthread_mutex_unlock(&global_interpreter_lock);
\end{minted}
\end{onlyenv}\begin{onlyenv}<5>
\includegraphics[width=\linewidth]{img/new_gil.png}
\normalsize
\textcolor{blue}{\url{https://github.com/zpoint/CPython-Internals/blob/master/Interpreter/gil/gil.md}}
\end{onlyenv}
\end{frame}
\begin{frame}{\mbox{ }}
\Large
\vspace{0.5 cm}
\begin{center}
Python 3.13.0 was released 16 days ago.
\vspace{1 cm}
\uncover<2>{It adds two new ways to avoid the GIL.}
\end{center}
\end{frame}
\begin{frame}
\vspace{1 cm}
\LARGE
\begin{center}
\textcolor{darkblue}{Method \#1: subinterpreters}
\end{center}
\end{frame}
\begin{frame}{Method \#1: subinterpreters}
\large
\vspace{0.5 cm}
\begin{columns}
\column{1.1\linewidth}
\includegraphics[width=\linewidth]{img/thread-interpreter-process.pdf}
\end{columns}
\vspace{0.5 cm}
\uncover<2>{Pre-3.13 trade-off: shared memory + GIL in {\bf multithreading} or shared-nothing + true parallel-processing in {\bf multiprocessing}. \textcolor{darkblue}{Now we have an in-between option.}}
\end{frame}
\begin{frame}[fragile]{It is now possible, but not easy, to use subinterpreters in Python}
\vspace{0.35 cm}
\scriptsize
\begin{minted}{python}
from test.support import interpreters
from test.support.interpreters import queues
def in_subinterp():
# Need to re-import; this is in its own little world...
from test.support.interpreters import queues
in_queue = Queue(in_id) # in_id comes from global scope
out_queue = Queue(out_id) # out_id comes from global scope
x = queue.get()
out_queue.put(x + number) # number comes from global scope
in_queue = queues.create()
out_queue = queues.create()
subinterp = interpreters.create()
subinterp.prepare_main({"in_id": in_queue.id, "out_id": out_queue.id, "number": 42})
subinterp.call_in_thread(in_subinterp)
in_queue.put(100)
assert out_queue.get() == 142
\end{minted}
\end{frame}
\begin{frame}{Very little support from libraries}
\vspace{1 cm}
\Large
\begin{center}
Many libraries, like NumPy, can't be used in subinterpreters yet.
\vspace{1 cm}
\uncover<2->{(NumPy just seg-faults!)}
\end{center}
\end{frame}
\begin{frame}
\vspace{1 cm}
\LARGE
\begin{center}
\textcolor{darkblue}{Method \#2: free-threading}
\end{center}
\end{frame}
\begin{frame}[fragile]{Method \#2: free-threading}
\vspace{1 cm}
\large
\begin{minted}{bash}
cd Python-3.13.0/
./configure --disable-gil
make
make install
\end{minted}
\vspace{1 cm}
\uncover<2>{Free-threaded Python is a separate ABI, ``{\tt cp313t}'', rather than ``{\tt cp313}''.}
\vspace{0.25 cm}
\uncover<2->{Compiled extensions have to explicitly opt-in.}
\end{frame}
\begin{frame}{Free-threaded Python has been discussed for a long time}
\vspace{0.5 cm}
\begin{columns}
\column{1.1\linewidth}
\includegraphics[width=\linewidth]{img/googletrends-gil-timeline.pdf}
\end{columns}
\vspace{0.5 cm}
\uncover<2->{Five forked Pythons, in 2000, 2008, 2013, 2017, 2021, experimentally disabled the GIL.}
\vspace{0.25 cm}
\uncover<3->{Until recently, they all made single (and sometimes multi) threaded performance \underline{\it worse}.}
\end{frame}
\begin{frame}[fragile]{Why is it working now?}
\vspace{0.5 cm}
\large
The main issue was CPython's ubiquitous reference counting. Replacing
\vspace{0.1 cm}
\begin{minted}{c}
((PyObject*)(obj))->ob_refcnt++;
\end{minted}
\vspace{0.1 cm}
with an atomic operation (or similar) is expensive because it is called so often.
\vspace{0.5 cm}
\uncover<2->{J.~Choi, T.~Shull, J.~Torrellas, {\it Biased reference counting: minimizing atomic operations in garbage collection}, PACT'18 (\textcolor{blue}{\href{https://doi.org/10.1145/3243176.3243195}{DOI 10.1145/3243176.3243195}}).}
\vspace{0.25 cm}
\uncover<3->{Most objects are only referenced by the thread in which they were created.}
\begin{center}
\uncover<4->{\includegraphics[width=0.63\linewidth]{img/two-reference-counters.pdf}}
\end{center}
\end{frame}
\begin{frame}{Also\ldots \hspace{5 cm} \small\url{https://peps.python.org/pep-0703}}
\vspace{0.5 cm}
\large
\begin{itemize}
\item no reference counting of immortal objects: \mintinline{python}{None}, \mintinline{python}{True}, \mintinline{python}{False}, small integers, interned strings\ldots
\item deferred reference counting: top-level functions, code objects, modules, methods tend to be accessed by many threads; don't reference count, only garbage collect
\item replacing PyMalloc (for small Python objects) with mimalloc
\item no linked lists in garbage collecting
\item no more generational garbage collecting (reference counting handles short-lived objects)
\item locks on all mutable containers (lists, dicts) with optimistic access
\item alternatives to borrowed references in C (\mintinline{c}{PyList_GetItem} $\to$ \mintinline{c}{PyList_FetchItem})
\item ``critical sections'' in bytecode sequences to avoid deadlocks
\end{itemize}
\end{frame}
\begin{frame}
\vspace{1 cm}
\LARGE
\begin{center}
\textcolor{darkblue}{Scaling tests}
\end{center}
\end{frame}
\begin{frame}[fragile]{Something computationally expensive in pure Python}
\vspace{0.4 cm}
\scriptsize
\begin{minted}{python}
# Can't use NumPy in subinterpreters, so use Python's built-in array instead.
offsets = (ctypes.c_int64 * (N + 1)).from_address(ptr_offsets)
pt = (ctypes.c_float * offsets[-1]).from_address(ptr_pt)
eta = (ctypes.c_float * offsets[-1]).from_address(ptr_eta)
phi = (ctypes.c_float * offsets[-1]).from_address(ptr_phi)
mass = (ctypes.c_float * N).from_address(ptr_mass)
# Dimuon mass on all combinations of muons per event...
for event in range(start, stop):
max_mass = 0
for i in range(offsets[event], offsets[event + 1]):
pt1 = pt[i]
eta1 = eta[i]
phi1 = phi[i]
for j in range(i + 1, offsets[event + 1]):
pt2 = pt[j]
eta2 = eta[j]
phi2 = phi[j]
m = sqrt(2*pt1*pt2*(cosh(eta1 - eta2) - cos(phi1 - phi2)))
if m > max_mass:
max_mass = m
mass[event] = max_mass
\end{minted}
\end{frame}
\begin{frame}{Scaling test results (8 physical cores)}
\large
\vspace{0.5 cm}
\begin{columns}
\column{0.8\linewidth}
\only<1>{\includegraphics[width=\linewidth]{img/scaling-of-compute-basic.pdf}}\only<2>{\includegraphics[width=\linewidth]{img/scaling-of-compute-circle.pdf}}\only<3>{\includegraphics[width=\linewidth]{img/scaling-of-compute-extra.pdf}}
\column{0.25\linewidth}
\only<1>{Subinterpreters and free-threading both escape single-thread scaling limit.}\only<2>{Free-threading doesn't have all the latest optimizations; single-threaded is slower (for now).}\only<3>{In fact, it's a constant factor.}
\end{columns}
\end{frame}
\begin{frame}{CPUs are constantly busy, even though scaling isn't perfect}
\Large
\vspace{0.25 cm}
\begin{center}
\begin{onlyenv}<1>
\includegraphics[width=0.93\linewidth]{img/cpu-of-compute-subinterpreters.pdf}
\includegraphics[width=0.93\linewidth]{img/cpu-of-compute-free-threads.pdf}
\end{onlyenv}\begin{onlyenv}<2>
\includegraphics[width=0.93\linewidth]{img/cpu-of-compute-gil-threads.pdf}
For a pure Python, computationally intensive workload like this, \\ the GIL strictly limits available threads to 1.
\end{onlyenv}
\end{center}
\end{frame}
\begin{frame}{Can we go further? (48 physical cores)}
\large
\vspace{0.5 cm}
\begin{columns}
\column{0.8\linewidth}
\includegraphics[width=\linewidth]{img/scaling-of-compute-big.pdf}
\column{0.25\linewidth}
The hyperthreading threshold doesn't look significant on this hardware (AWS c7i.metal-48xl).
\end{columns}
\end{frame}
\begin{frame}{Not all threads finish equal work in equal times}
\vspace{0.25 cm}
\begin{center}
\includegraphics[width=0.93\linewidth]{img/cpu-of-compute-subinterpreters-big.pdf}
\includegraphics[width=0.93\linewidth]{img/cpu-of-compute-free-threads-big.pdf}
\end{center}
\end{frame}
\begin{frame}
\vspace{1 cm}
\LARGE
\begin{center}
\textcolor{darkblue}{Scaling tests with Uproot}
\end{center}
\end{frame}
\begin{frame}[fragile]{Uproot has already been (partly) evading the GIL}
\large
\vspace{0.7 cm}
Most computationally intensive work is offloaded to NumPy and Awkward Array, which release the GIL before numerical computations.
\small
\vspace{0.1 cm}
\begin{minted}{c}
Py_BEGIN_ALLOW_THREADS; // releases the GIL
big_computation_without_PyObjects(); // other threads run, too
Py_END_ALLOW_THREADS; // re-acquires the GIL
return result_with_PyObjects;
\end{minted}
\large
\vspace{0.4 cm}
\uncover<2->{But we only enter GIL-released C code on a per-TBasket basis.}
\vspace{0.4 cm}
\uncover<2->{The code between these excursions are synchronization points (Amdahl's law).}
\end{frame}
\begin{frame}[fragile]{Two ways to parallelize Uproot}
\large
\vspace{1 cm}
\hspace{-0.5 cm}\textcolor{darkblue}{``External'':} some code that controls threading (e.g.\ Dask) calls Uproot
\small
\vspace{0.1 cm}
\begin{minted}{python}
def in_thread(uproot_tree, start, stop):
return uproot_tree.arrays(entry_start=start, entry_stop=stop)
executor = ThreadPoolExecutor(max_workers=N)
batches = executor.map(in_thread, list_of_args_tuples)
\end{minted}
\large
\vspace{0.5 cm}
\hspace{-0.5 cm}\textcolor{darkblue}{``Internal'':} Uproot reads TBaskets in parallel but returns one array
\small
\vspace{0.1 cm}
\begin{minted}{python}
executor = ThreadPoolExecutor(max_workers=N)
array = uproot_tree.arrays(
decompression_executor=executor, interpretation_executor=executor
)
\end{minted}
\end{frame}
\begin{frame}{Parallelizing Uproot ``externally''}
\large
\vspace{0.5 cm}
\begin{columns}
\column{0.8\linewidth}
\includegraphics[width=\linewidth]{img/scaling-of-uproot-external.pdf}
\column{0.25\linewidth}
GIL-bound is not bad, but there's a small improvement.
\vspace{0.5 cm}
The bigger difference is between the default file \mintinline{python}{handler} and \mintinline{python}{MemmapSource}.
\vspace{\baselineskip}
\end{columns}
\end{frame}
\begin{frame}{Parallelizing Uproot ``internally''}
\large
\vspace{0.5 cm}
\begin{columns}
\column{0.8\linewidth}
\includegraphics[width=\linewidth]{img/scaling-of-uproot-internal.pdf}
\column{0.25\linewidth}
GIL-bound is not bad, but there's a small improvement.
\vspace{0.5 cm}
Especially in the internal case \textcolor{gray}{(more fine-grained; less waste from multiple threads reading the same TBaskets)}.
\end{columns}
\end{frame}
\begin{frame}{CPUs are not always busy, but free-threaded is busier\ldots}
\vspace{1 cm}
\begin{center}
\includegraphics[width=0.93\linewidth]{img/cpu-of-uproot-internal-16.pdf}
\vspace{0.5 cm}
Note: file-reading tasks performed with warm cache, so RAM $\to$ CPU is the only I/O.
\end{center}
\end{frame}
\begin{frame}{Can we go further? (48 physical cores, ``internal'' parallelization)}
\large
\vspace{0.5 cm}
\begin{columns}
\column{0.8\linewidth}
\includegraphics[width=\linewidth]{img/scaling-of-uproot-internal-big.pdf}
\column{0.25\linewidth}
Free-threading starts to be relevant above 8 threads and keeps getting better until 3~GB/second.
\vspace{1 cm}
You need well over 8 cores to see this.
\end{columns}
\end{frame}
\begin{frame}{CPUs are still not always busy, but free-threaded is busier\ldots}
\vspace{0.25 cm}
\begin{center}
\includegraphics[width=0.93\linewidth]{img/cpu-of-uproot-internal-big-32.pdf}
\includegraphics[width=0.93\linewidth]{img/cpu-of-uproot-internal-big-64.pdf}
\end{center}
\end{frame}
\begin{frame}{Conclusions}
\vspace{0.3 cm}
\Large
\begin{itemize}\setlength{\itemsep}{0.2 cm}
\item<1-> Python 3.13 provides two new ways to avoid the GIL.
\item<2-> {\bf Subprocessors} require more effort from Python users and are not well supported by libraries (NumPy).
\item<3-> {\bf Free-threading} required a massive overhaul of Python's internals, but ``just works'' from a Python user's perspective.
\vspace{0.2 cm}
\uncover<4->{\textcolor{gray}{(Python community is much more interested in free-threading.)}}
\vspace{0.1 cm}
\item<5-> They scale identically, apart from a constant factor (bytecode optimizations, to be implemented later in free-threading mode).
\item<6-> Uproot has already been releasing the GIL, but benefits from free-threading if you have a lot more than 8 cores.
\end{itemize}
\end{frame}
\end{document}