-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentropy.py
115 lines (93 loc) · 4.08 KB
/
entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import json
import math
import secrets
from collections import Counter
from mnemonic import Mnemonic
"""
BIP39 recovery phrase specification:
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
Recovery phrases are implemented in many cryptowallets, for example Mycelium:
https://wallet.mycelium.com/
"""
BITS_PER_WORD = 11
def find_entropy(customizer_phrase: str, wordlist: list, randomized_bits_count: int):
first_letters_in_beginning = list(customizer_phrase.lower())
wordlist_first_letter_counts = Counter(word[0] for word in wordlist)
letter_counts_in_wordlist = [
wordlist_first_letter_counts[b] for b in first_letters_in_beginning
]
pure_entropy_count = (
randomized_bits_count - len(first_letters_in_beginning) * BITS_PER_WORD
)
customized_beginning_entropy_count = sum(
math.log2(freq) for freq in letter_counts_in_wordlist
)
final_entropy_count = customized_beginning_entropy_count + pure_entropy_count
final_entropy_count = round(final_entropy_count, 2)
ljust_width = 30
print("Customizer phrase:".ljust(ljust_width), customizer_phrase)
print("Original entropy:".ljust(ljust_width), randomized_bits_count)
print("Entropy with customization:".ljust(ljust_width), final_entropy_count)
def get_bitcounts(mnemonic_word_count: int):
mnemonic_total_bitcount = mnemonic_word_count * BITS_PER_WORD
checksum_bitcount = mnemonic_total_bitcount // 32
randomized_bits_count = mnemonic_total_bitcount - checksum_bitcount
byte_count_without_checksum = randomized_bits_count // 8
return randomized_bits_count, byte_count_without_checksum
def generate_words(customizer_phrase: str, mnemo: Mnemonic, mnemonic_word_count: int):
wordlist = mnemo.wordlist
first_letters_in_beginning = list(customizer_phrase.lower())
randomized_bits_count, byte_count_without_checksum = get_bitcounts(
mnemonic_word_count
)
if len(customizer_phrase) * BITS_PER_WORD >= randomized_bits_count:
raise ValueError("Customizer phrase is too long")
fixed_words = []
fixed_words_indices = []
words_by_first_letter = {
b: [word for word in wordlist if word[0] == b]
for b in first_letters_in_beginning
}
for b in first_letters_in_beginning:
this_word = secrets.choice(words_by_first_letter[b])
fixed_words.append(this_word)
fixed_words_indices.append(wordlist.index(this_word))
word_index_to_bits = lambda i: bin(i)[2:].zfill(BITS_PER_WORD)
customized_beginning_bits = "".join(
word_index_to_bits(i) for i in fixed_words_indices
)
pure_entropy_count = randomized_bits_count - len(customized_beginning_bits)
pure_entropy = secrets.randbits(pure_entropy_count)
pure_entropy_bitstring = bin(pure_entropy)[2:].zfill(pure_entropy_count)
combined_data_bitstring = customized_beginning_bits + pure_entropy_bitstring
# We put in the entropy, the library handles the checksum
randomized_bytes = int(combined_data_bitstring, 2).to_bytes(
byte_count_without_checksum, byteorder="big"
)
phrase = mnemo.to_mnemonic(randomized_bytes)
return phrase
def main():
mnemo = Mnemonic("english")
wordlist = mnemo.wordlist
word_max_length = max(len(word) for word in wordlist)
# Set to one of [12, 15, 18, 21, 24]
mnemonic_word_count = 12
number_of_phrases = 10
customizer_phrase = "fungible"
recovery_phrases = [
generate_words(customizer_phrase, mnemo, mnemonic_word_count)
for _ in range(number_of_phrases)
]
randomized_bits_count, _ = get_bitcounts(mnemonic_word_count)
find_entropy(customizer_phrase, wordlist, randomized_bits_count)
phrases_file = "phrases.json"
with open(phrases_file, "w") as f:
json.dump(recovery_phrases, f, indent=4)
for recovery_phrase in recovery_phrases:
words = recovery_phrase.split()
# Align words
word_room = word_max_length + 1
formatted_phrase = "".join(f"{word.ljust(word_room)}" for word in words)
print(formatted_phrase)
if __name__ == "__main__":
main()