-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
168 lines (140 loc) · 5.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from dotenv import load_dotenv
from transformers import pipeline
import numpy as np
from agentrec.datasets import PromptPool
from agentrec.models import SBERTAgentRec
import math
OUTPUT_ALGO = "log_pmean"
PMEAN = 200
def main():
pool = PromptPool()
pool.load(path="./data/train.jsonl",
agent_path="./data/agents.jsonl")
test_pool = PromptPool()
test_pool.load(path="./data/test.jsonl",
agent_path="./data/agents.jsonl")
classifier = SBERTAgentRec("./models/test_model/")
#classifier = SBERTAgentRec("all-mpnet-base-v2")
classifier.fit(pool.pool)
if input("Perform automated test? (y/[n]): ").lower() == "y":
accurate = 0
total = 0
for obj in test_pool.pool:
agent_name = obj["agent_name"]
prompt = obj["prompt"]
raw = classifier.transform(prompt)
scores = {}
match OUTPUT_ALGO:
case "arithmetic_mean":
for agent in raw:
scores[agent] = sum(raw[agent]) / len(raw[agent])
case "geometric_mean":
for agent in raw:
n = len(raw[agent])
d = 1
for score in raw[agent]:
d *= score
scores[agent] = d ** (1/n)
case "pmean":
for agent in raw:
score_total = 0
for score in raw[agent]:
score_total += score ** PMEAN
score_total /= len(raw[agent])
scores[agent] = score_total ** (1 / PMEAN)
case "weighted_pmean":
for agent in raw:
score_total = 0
weights_total = 0
for score in raw[agent]:
weight = (1 / (1 - abs(score)))
weights_total += weight
score_total += weight * (abs(score) ** PMEAN)
score_total /= weights_total
scores[agent] = score_total
case "max":
for agent in raw:
max_score = 0
for score in raw[agent]:
if max_score < score:
score = max_score
scores[agent] = score
case "log_pmean":
for agent in raw:
score_total = 0
for score in raw[agent]:
score_total += score ** PMEAN
score_total = np.log(score_total)
score_total -= np.log(len(raw[agent]))
scores[agent] = score_total * (1 / PMEAN)
case _:
raise RuntimeError("Invalid mean type")
best = ""
best_score = -math.inf
for agent in scores:
if scores[agent] > best_score:
best = agent
best_score = scores[agent]
if best == agent_name:
accurate += 1
print(total, "/", len(test_pool.pool))
total += 1
print("Test accuracy:", float(accurate) / float(total))
while stdin := input("> "):
raw = classifier.transform(stdin)
scores = {}
match OUTPUT_ALGO:
case "arithmetic_mean":
for agent in raw:
scores[agent] = sum(raw[agent]) / len(raw[agent])
case "geometric_mean":
for agent in raw:
n = len(raw[agent])
d = 1
for score in raw[agent]:
d *= score
scores[agent] = d ** (1/n)
case "pmean":
for agent in raw:
score_total = 0
for score in raw[agent]:
score_total += score ** PMEAN
score_total /= len(raw[agent])
scores[agent] = score_total ** (1 / PMEAN)
case "weighted_pmean":
for agent in raw:
score_total = 0
weights_total = 0
for score in raw[agent]:
weight = (1 / (1 - abs(score)))
weights_total += weight
score_total += weight * (abs(score) ** PMEAN)
score_total /= weights_total
scores[agent] = score_total
case "max":
for agent in raw:
max_score = 0
for score in raw[agent]:
if max_score < score:
score = max_score
scores[agent] = score
case "log_pmean":
for agent in raw:
score_total = 0
for score in raw[agent]:
score_total += score ** PMEAN
score_total = np.log(score_total)
score_total -= np.log(len(raw[agent]))
scores[agent] = score_total * (1 / PMEAN)
case _:
raise RuntimeError("Invalid mean type")
best = ""
best_score = -math.inf
for agent in scores:
if scores[agent] > best_score:
best = agent
best_score = scores[agent]
print("Selected Agent:", best)
if __name__ == "__main__":
load_dotenv()
main()