We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi there, I am trying to use your code to train some new pybullet environment. Here is my Pip log: Keras (2.0.2) Markdown (2.6.11) mock (2.0.0) numpy (1.13.3) pbr (3.1.1) Pillow (5.0.0) pip (9.0.1) protobuf (3.5.1) pybullet (1.7.4) pyglet (1.2.4) Pyste (0.9.10) PyYAML (3.12) requests (2.18.4) roboschool (1.0, /home/laraki/roboschool) scikit-learn (0.19.1) scipy (1.0.0) setuptools (20.7.0) six (1.11.0) sklearn (0.0) statistics (1.0.3.5) tabulate (0.8.2) tensorflow (1.4.1) tensorflow-tensorboard (0.4.0rc3) tflearn (0.3.2) Theano (0.9.0) unity-lens-photos (1.0) urllib3 (1.22) Werkzeug (0.14.1) wheel (0.29.0)
Traceback: sudo KERAS_BACKEND=theano python run_pg.py --gamma=0.995 --lam=0.97 --agent=modular_rl.agentzoo.TrpoAgent --max_kl=0.01 --cg_damping=0.1 --activation=tanh --n_iter=250 --seed=0 --timesteps_per_batch=5000 --env=InvertedPendulumBulletEnv-v0 --outfile=$outdir/InvertedPendulum-v0.h pybullet build time: Dec 6 2017 15:03:38 Using Theano backend. Traceback (most recent call last): File "run_pg.py", line 36, in agent = agent_ctor(env.observation_space, env.action_space, cfg) File "/home/laraki/roboschool/agent_zoo/modular_rl/modular_rl/agentzoo.py", line 118, in init policy, self.baseline = make_mlps(ob_space, ac_space, cfg) File "/home/laraki/roboschool/agent_zoo/modular_rl/modular_rl/agentzoo.py", line 38, in make_mlps net.add(ConcatFixedStd()) File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 455, in add output_tensor = layer(self.outputs[0]) File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 554, in call output = self.call(inputs, **kwargs) TypeError: call() takes exactly 3 arguments (2 given)
I did fix all the issues related to net.layers but I don't know how to fix this one, any ideas? Thanks in advance
The text was updated successfully, but these errors were encountered:
I also meet this problem.
Sorry, something went wrong.
I fixed the error in this fork: https://github.com/D3473R/modular_rl
No branches or pull requests
Hi there,
I am trying to use your code to train some new pybullet environment. Here is my Pip log:
Keras (2.0.2)
Markdown (2.6.11)
mock (2.0.0)
numpy (1.13.3)
pbr (3.1.1)
Pillow (5.0.0)
pip (9.0.1)
protobuf (3.5.1)
pybullet (1.7.4)
pyglet (1.2.4)
Pyste (0.9.10)
PyYAML (3.12)
requests (2.18.4)
roboschool (1.0, /home/laraki/roboschool)
scikit-learn (0.19.1)
scipy (1.0.0)
setuptools (20.7.0)
six (1.11.0)
sklearn (0.0)
statistics (1.0.3.5)
tabulate (0.8.2)
tensorflow (1.4.1)
tensorflow-tensorboard (0.4.0rc3)
tflearn (0.3.2)
Theano (0.9.0)
unity-lens-photos (1.0)
urllib3 (1.22)
Werkzeug (0.14.1)
wheel (0.29.0)
Traceback:
sudo KERAS_BACKEND=theano python run_pg.py --gamma=0.995 --lam=0.97 --agent=modular_rl.agentzoo.TrpoAgent --max_kl=0.01 --cg_damping=0.1 --activation=tanh --n_iter=250 --seed=0 --timesteps_per_batch=5000 --env=InvertedPendulumBulletEnv-v0 --outfile=$outdir/InvertedPendulum-v0.h
pybullet build time: Dec 6 2017 15:03:38
Using Theano backend.
Traceback (most recent call last):
File "run_pg.py", line 36, in
agent = agent_ctor(env.observation_space, env.action_space, cfg)
File "/home/laraki/roboschool/agent_zoo/modular_rl/modular_rl/agentzoo.py", line 118, in init
policy, self.baseline = make_mlps(ob_space, ac_space, cfg)
File "/home/laraki/roboschool/agent_zoo/modular_rl/modular_rl/agentzoo.py", line 38, in make_mlps
net.add(ConcatFixedStd())
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 455, in add
output_tensor = layer(self.outputs[0])
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 554, in call
output = self.call(inputs, **kwargs)
TypeError: call() takes exactly 3 arguments (2 given)
I did fix all the issues related to net.layers but I don't know how to fix this one, any ideas?
Thanks in advance
The text was updated successfully, but these errors were encountered: