-
Notifications
You must be signed in to change notification settings - Fork 3
/
mr2nerf.py
272 lines (205 loc) · 8.22 KB
/
mr2nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import logging
import logging.config
logging.config.dictConfig({
'version': 1,
'formatters': {
'console': {
'format': '%(asctime)s | %(levelname)s | %(filename)s : %(lineno)s | >>> %(message)s',
'datefmt': '%Y-%m-%d %H:%M:%S'
},
'file': {
'format': '%(asctime)s | %(levelname)s | %(filename)s : %(lineno)s | >>> %(message)s',
'datefmt': '%Y-%m-%d %H:%M:%S'
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'formatter': 'console',
'level': 'INFO',
'stream': 'ext://sys.stdout'
},
'file': {
'class': 'logging.handlers.RotatingFileHandler',
'formatter': 'file',
'level': 'DEBUG',
'filename': 'mr2nerf.log',
'mode': 'a',
'maxBytes': 0,
'backupCount': 3
}
},
'loggers': {
'': {
'handlers': ['console', 'file'],
'level': 'DEBUG',
'propagate': True
}
}
})
LOGGER = logging.getLogger(__name__)
import argparse
import csv
import json
import math
import numpy as np
import os
import cv2
from copy import deepcopy as dc
from tqdm import tqdm
from pathlib import Path
from utils import sharpness, Mat2Nerf, central_point, plot, _PLT, reflect
# from mat_utils import matrix_from_euler
from concurrent.futures import ThreadPoolExecutor
ROT_MAT = np.array([[1, 0, 0, 0],
[0, 0, 1, 0],
[0,-1, 0, 0],
[0, 0, 0, 1]])
def parse_args():
parser = argparse.ArgumentParser(description="convert Reality Capture csv export to nerf format transforms.json")
parser.add_argument("--input", help="specify json file location") #TODO: Chang to positional argument
parser.add_argument("--out", dest="path", default="transforms.json", help="output path")
parser.add_argument("--imgfolder", default="./images/", help="location of folder with images")
parser.add_argument("--imgtype", default="jpg", help="type of images (ex. jpg, png, ...)")
parser.add_argument("--aabb_scale", default=16, type=int, help="size of the aabb, default is 16")
parser.add_argument("--plot", action="store_true", help="plot the cameras and the bounding region in 3D")
parser.add_argument("--scale", default=1.0, type=float, help="scale the scene by a factor")
parser.add_argument("--no_scale", action="store_true", help="DISABLES the scaling of the cameras to the bounding region")
parser.add_argument("--no_center", action="store_true", help="DISABLES the centering of the cameras around the computed central point")
parser.add_argument("--camera_size", default=0.2, type=float, help="size of the camera in the 3D plot. Does not affect the output.")
parser.add_argument("--debug", action="store_true", help="enables debug mode")
parser.add_argument("--debug_ignore_images", action="store_true", help="IGNORES the images in the xml file. For debugging purposes only.")
parser.add_argument("--threads", default=8, type=int, help="number of threads to use for processing")
args = parser.parse_args()
return args
def build_sensor(intrinsic):
out = {}
out["w"] = float(intrinsic['width'])
out["h"] = float(intrinsic['height'])
# Focal length in mm
focal = float(intrinsic['focalLength'])
# Sensor width in mm
sensor_width = float(intrinsic['sensorWidth'])
sensor_height = float(intrinsic['sensorHeight'])
# Focal length in pixels
out["fl_x"] = (out["w"] * focal) / sensor_width
# Check W/H ratio to sensor ratio
if np.isclose((out["w"] / out["h"]), (sensor_width / sensor_height)):
out["fl_y"] = (out["h"] * focal) / sensor_height
else:
LOGGER.warning("W/H ratio does not match sensor ratio, this is likely a bug from Meshroom. Will use fl_x to set fl_y.")
out["fl_y"] = out["fl_x"]
# out["fl_x"] = focal
# out["fl_y"] = focal
# # Given the w, h, pixel_width, pixel_height, and focal_length
# # Calculate the focal length in pixels
# fl_pxl = (w * focal_length) / (w * pixel_width)
camera_angle_x = math.atan(out["w"] / (out['fl_x']) * 2) * 2
camera_angle_y = math.atan(out["h"] / (out['fl_y']) * 2) * 2
out["camera_angle_x"] = camera_angle_x
out["camera_angle_y"] = camera_angle_y
out["cx"] = float(intrinsic['principalPoint'][0]) + (out["w"] / 2.0)
out["cy"] = float(intrinsic['principalPoint'][1]) + (out["h"] / 2.0)
if intrinsic['type'] == 'radial3':
for i, coef in enumerate(intrinsic['distortionParams']):
out["k{}".format(i + 1)] = float(coef)
# intrinsics_keys = ['cx', 'cy', 'b1', 'b2',
# 'k1', 'k2', 'k3', 'k4',
# 'p1', 'p2', 'p3', 'p4']
return out
def init_logging(args):
# Get handlers from logging config
handlers = logging.getLogger().handlers
if args.debug:
for log in handlers:
log.setLevel(logging.DEBUG)
# Get log path from config
log_path = Path(handlers[1].baseFilename)
if log_path.is_file():
handlers[1].doRollover()
if __name__ == "__main__":
args = parse_args()
init_logging(args)
IMGFOLDER = Path(args.imgfolder)
files = list(IMGFOLDER.glob('*.{}'.format(args.imgtype)))
stems = list([f.stem for f in files])
# Check if the files path has images in it
if(len(files)==0) & (args.debug_ignore_images==False):
LOGGER.error('No images found in folder: {}'.format(IMGFOLDER))
exit()
out = dict()
out['aabb_scale'] = args.aabb_scale
def read_img(cam):
if args.debug_ignore_images:
return cam, None
img = cv2.imread(str(cam['file_path']))
return cam, img
frames = []
with open(args.input, 'r') as f:
data = json.load(f)
transforms = {}
for pose in data['poses']:
transform = pose['pose']['transform']
rot = np.asarray(transform['rotation'])
rot = rot.reshape(3,3).astype(float)
ctr = np.asarray(transform['center'])
ctr = ctr.astype(float)
M = np.eye(4)
M[:3, :3] = rot
M[:3, 3] = ctr * args.scale
M = Mat2Nerf(M.astype(float))
transforms[pose['poseId']] = np.dot(ROT_MAT, M)
intrinsics = {}
for intrinsic in data['intrinsics']:
intrinsics[intrinsic['intrinsicId']] = build_sensor(intrinsic)
frames = []
for view in data['views']:
# Path to image
path = Path(view['path'])
# Get the image name
name = path.stem
# Check if the image exists
new_path = (IMGFOLDER / name).with_suffix(f'.{args.imgtype}')
if (not args.debug_ignore_images) and ((new_path not in files) or (new_path.exists() == False)):
LOGGER.warning(f'Image not found: {name}')
continue
# Get poseId
poseId = view['poseId']
# Get intrinsicId
intrinsicId = view['intrinsicId']
camera = {}
camera.update(dc(intrinsics[intrinsicId]))
if poseId in transforms:
camera['transform_matrix'] = transforms[poseId]
camera['file_path'] = str(new_path)
camera['ids'] = [poseId, intrinsicId]
else:
LOGGER.warning(f'PoseId {poseId} not found in transforms, skipping image: {name}')
continue
frames.append(camera)
pbar = tqdm(total=len(frames), desc='Processing frames')
with ThreadPoolExecutor(max_workers=args.threads) as exec:
for i, (cam, img) in enumerate(exec.map(read_img, frames)):
LOGGER.debug(f"Processing image: {cam['file_path']}")
LOGGER.debug(f"PoseId {cam['ids'][0]} | IntrinsicId {cam['ids'][1]}")
del cam['ids']
cam['sharpness'] = 1 if args.debug_ignore_images else sharpness(img)
LOGGER.debug(f"Camera {i:03d} info:")
for k,v in camera.items():
LOGGER.debug('{}: {}'.format(k, v))
LOGGER.debug("Finished processing {i:03d}\n")
pbar.update(1)
out['frames'] = frames
if args.no_center:
center = np.zeros(3)
else:
# Compute the center of attention
center = central_point(out)
# Set the offset and convert to list
for f in out["frames"]:
f["transform_matrix"][0:3,3] -= center
f["transform_matrix"] = f["transform_matrix"].tolist()
with open(args.path, "w") as f:
json.dump(out, f, indent=4)
if _PLT & args.plot:
plot(out, center, args.camera_size)