-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsamplerplots.py
601 lines (449 loc) · 25.9 KB
/
samplerplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 30 13:42:45 2021
@author: Robin
"""
import numpy as np
import matplotlib.pyplot as plt
import json
import os
import dill
import fnmatch
filelist = fnmatch.filter(os.listdir('samplers/'), '*_sampler.pickle')
filelist_gauss = fnmatch.filter(os.listdir('samplers_astrosil/'), '*_sampler.pickle')
filelist_10ice = fnmatch.filter(os.listdir('samplers_10ice/'), '*_sampler.pickle')
filelist_5ice = fnmatch.filter(os.listdir('samplers_5ice/'), '*_sampler.pickle')
filelist_20ice = fnmatch.filter(os.listdir('samplers_20ice/'), '*_sampler.pickle')
best_guesses = [[], [], [], []]
best_guesses_gauss = [[], [], [], [], [], [], []]
best_guesses_10ice = [[], [], [], [], [], [], []]
best_guesses_20ice = [[], [], [], [], [], [], []]
best_guesses_5ice = [[], [], [], [], [], [], []]
best_guesses_gauss_qfix = [[], [], [], [], [], [], []]
best_guesses_10ice_qfix = [[], [], [], [], [], [], []]
best_guesses_20ice_qfix = [[], [], [], [], [], [], []]
best_guesses_5ice_qfix = [[], [], [], [], [], [], []]
weird_q = []
for x in filelist:
jsonname = x.split('_')[0]
jsonfile = open("processed_data/{:}".format(jsonname + '.json'))
inputjson = json.load(jsonfile)
picklefile = open('samplers/{:}'.format(x), 'rb')
sampler = dill.load(picklefile)
samples = sampler.flatchain
theta_max = samples[np.argmax(sampler.flatlnprobability)]
if len(theta_max) == 3:
if theta_max[1] >= -3:
weird_q.append(x)
if theta_max[1] <= -4:
weird_q.append(x)
if len(theta_max) == 3:
best_guesses[0].append(theta_max[0])
best_guesses[1].append(theta_max[1])
best_guesses[2].append(theta_max[2])
best_guesses[3].append(inputjson['main_results'][0]['lstar'])
if len(theta_max) == 2:
best_guesses[0].append(theta_max[0])
best_guesses[1].append(-3.5)
best_guesses[2].append(theta_max[1])
best_guesses[3].append(inputjson['main_results'][0]['lstar'])
aaa = [[x[0] for x in best_guesses_gauss[4]], [x[1] for x in best_guesses_gauss[4]]]
for x in filelist_gauss:
jsonname = x.split('_')[0]
jsonfile = open("processed_data/{:}".format(jsonname + '.json'))
inputjson = json.load(jsonfile)
picklefile = open('samplers_astrosil/{:}'.format(x), 'rb')
sampler = dill.load(picklefile)
samples = sampler.flatchain
theta_max = samples[np.argmax(sampler.flatlnprobability)]
flat_samples = sampler.get_chain(discard=100, flat=True)
if len(theta_max) == 3:
best_guesses_gauss[0].append(theta_max[0])
best_guesses_gauss[1].append(theta_max[1])
best_guesses_gauss[2].append(theta_max[2])
best_guesses_gauss[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_gauss[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_gauss[5].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_gauss[6].append(np.percentile(flat_samples[:, 2], [16, 84]))
if len(theta_max) == 2:
# best_guesses_gauss[0].append(theta_max[0])
# best_guesses_gauss[1].append(-3.5)
# best_guesses_gauss[2].append(theta_max[1])
# best_guesses_gauss[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_gauss_qfix[0].append(theta_max[0])
best_guesses_gauss_qfix[1].append(-3.5)
best_guesses_gauss_qfix[2].append(theta_max[1])
best_guesses_gauss_qfix[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_gauss_qfix[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_gauss_qfix[5].append([0, 0])
best_guesses_gauss_qfix[6].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_gauss[4] = [[x[0] for x in best_guesses_gauss[4]], [x[1] for x in best_guesses_gauss[4]]]
best_guesses_gauss[5] = [[x[0] for x in best_guesses_gauss[5]], [x[1] for x in best_guesses_gauss[5]]]
best_guesses_gauss[6] = [[x[0] for x in best_guesses_gauss[6]], [x[1] for x in best_guesses_gauss[6]]]
best_guesses_gauss_qfix[4] = [[x[0] for x in best_guesses_gauss_qfix[4]], [x[1] for x in best_guesses_gauss_qfix[4]]]
best_guesses_gauss_qfix[5] = [[x[0] for x in best_guesses_gauss_qfix[5]], [x[1] for x in best_guesses_gauss_qfix[5]]]
best_guesses_gauss_qfix[6] = [[x[0] for x in best_guesses_gauss_qfix[6]], [x[1] for x in best_guesses_gauss_qfix[6]]]
for x in filelist_10ice:
jsonname = x.split('_')[0]
jsonfile = open("processed_data/{:}".format(jsonname + '.json'))
inputjson = json.load(jsonfile)
picklefile = open('samplers_10ice/{:}'.format(x), 'rb')
sampler = dill.load(picklefile)
samples = sampler.flatchain
theta_max = samples[np.argmax(sampler.flatlnprobability)]
flat_samples = sampler.get_chain(discard=100, flat=True)
if len(theta_max) == 3:
best_guesses_10ice[0].append(theta_max[0])
best_guesses_10ice[1].append(theta_max[1])
best_guesses_10ice[2].append(theta_max[2])
best_guesses_10ice[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_10ice[5].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_10ice[6].append(np.percentile(flat_samples[:, 2], [16, 84]))
best_guesses_10ice[3].append(inputjson['main_results'][0]['lstar'])
if len(theta_max) == 2:
# best_guesses_10ice[0].append(theta_max[0])
# best_guesses_10ice[1].append(-3.5)
# best_guesses_10ice[2].append(theta_max[1])
# best_guesses_10ice[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_10ice_qfix[0].append(theta_max[0])
best_guesses_10ice_qfix[1].append(-3.5)
best_guesses_10ice_qfix[2].append(theta_max[1])
best_guesses_10ice_qfix[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_10ice_qfix[5].append([0, 0])
best_guesses_10ice_qfix[6].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_10ice_qfix[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_10ice[4] = [[x[0] for x in best_guesses_10ice[4]], [x[1] for x in best_guesses_10ice[4]]]
best_guesses_10ice[5] = [[x[0] for x in best_guesses_10ice[5]], [x[1] for x in best_guesses_10ice[5]]]
best_guesses_10ice[6] = [[x[0] for x in best_guesses_10ice[6]], [x[1] for x in best_guesses_10ice[6]]]
best_guesses_10ice_qfix[4] = [[x[0] for x in best_guesses_10ice_qfix[4]], [x[1] for x in best_guesses_10ice_qfix[4]]]
best_guesses_10ice_qfix[5] = [[x[0] for x in best_guesses_10ice_qfix[5]], [x[1] for x in best_guesses_10ice_qfix[5]]]
best_guesses_10ice_qfix[6] = [[x[0] for x in best_guesses_10ice_qfix[6]], [x[1] for x in best_guesses_10ice_qfix[6]]]
for x in filelist_20ice:
jsonname = x.split('_')[0]
jsonfile = open("processed_data/{:}".format(jsonname + '.json'))
inputjson = json.load(jsonfile)
picklefile = open('samplers_20ice/{:}'.format(x), 'rb')
sampler = dill.load(picklefile)
samples = sampler.flatchain
theta_max = samples[np.argmax(sampler.flatlnprobability)]
flat_samples = sampler.get_chain(discard=100, flat=True)
if len(theta_max) == 3:
best_guesses_20ice[0].append(theta_max[0])
best_guesses_20ice[1].append(theta_max[1])
best_guesses_20ice[2].append(theta_max[2])
best_guesses_20ice[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_20ice[5].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_20ice[6].append(np.percentile(flat_samples[:, 2], [16, 84]))
best_guesses_20ice[3].append(inputjson['main_results'][0]['lstar'])
if len(theta_max) == 2:
# best_guesses_10ice[0].append(theta_max[0])
# best_guesses_10ice[1].append(-3.5)
# best_guesses_10ice[2].append(theta_max[1])
# best_guesses_10ice[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_20ice_qfix[0].append(theta_max[0])
best_guesses_20ice_qfix[1].append(-3.5)
best_guesses_20ice_qfix[2].append(theta_max[1])
best_guesses_20ice_qfix[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_20ice_qfix[5].append([0, 0])
best_guesses_20ice_qfix[6].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_20ice_qfix[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_20ice[4] = [[x[0] for x in best_guesses_20ice[4]], [x[1] for x in best_guesses_20ice[4]]]
best_guesses_20ice[5] = [[x[0] for x in best_guesses_20ice[5]], [x[1] for x in best_guesses_20ice[5]]]
best_guesses_20ice[6] = [[x[0] for x in best_guesses_20ice[6]], [x[1] for x in best_guesses_20ice[6]]]
best_guesses_20ice_qfix[4] = [[x[0] for x in best_guesses_20ice_qfix[4]], [x[1] for x in best_guesses_20ice_qfix[4]]]
best_guesses_20ice_qfix[5] = [[x[0] for x in best_guesses_20ice_qfix[5]], [x[1] for x in best_guesses_20ice_qfix[5]]]
best_guesses_20ice_qfix[6] = [[x[0] for x in best_guesses_20ice_qfix[6]], [x[1] for x in best_guesses_20ice_qfix[6]]]
for x in filelist_5ice:
jsonname = x.split('_')[0]
jsonfile = open("processed_data/{:}".format(jsonname + '.json'))
inputjson = json.load(jsonfile)
picklefile = open('samplers_5ice/{:}'.format(x), 'rb')
sampler = dill.load(picklefile)
samples = sampler.flatchain
theta_max = samples[np.argmax(sampler.flatlnprobability)]
flat_samples = sampler.get_chain(discard=100, flat=True)
if len(theta_max) == 3:
best_guesses_5ice[0].append(theta_max[0])
best_guesses_5ice[1].append(theta_max[1])
best_guesses_5ice[2].append(theta_max[2])
best_guesses_5ice[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_5ice[5].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_5ice[6].append(np.percentile(flat_samples[:, 2], [16, 84]))
best_guesses_5ice[3].append(inputjson['main_results'][0]['lstar'])
if len(theta_max) == 2:
# best_guesses_10ice[0].append(theta_max[0])
# best_guesses_10ice[1].append(-3.5)
# best_guesses_10ice[2].append(theta_max[1])
# best_guesses_10ice[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_5ice_qfix[0].append(theta_max[0])
best_guesses_5ice_qfix[1].append(-3.5)
best_guesses_5ice_qfix[2].append(theta_max[1])
best_guesses_5ice_qfix[4].append(np.percentile(flat_samples[:, 0], [16, 84]))
best_guesses_5ice_qfix[5].append([0, 0])
best_guesses_5ice_qfix[6].append(np.percentile(flat_samples[:, 1], [16, 84]))
best_guesses_5ice_qfix[3].append(inputjson['main_results'][0]['lstar'])
best_guesses_5ice[4] = [[x[0] for x in best_guesses_5ice[4]], [x[1] for x in best_guesses_5ice[4]]]
best_guesses_5ice[5] = [[x[0] for x in best_guesses_5ice[5]], [x[1] for x in best_guesses_5ice[5]]]
best_guesses_5ice[6] = [[x[0] for x in best_guesses_5ice[6]], [x[1] for x in best_guesses_5ice[6]]]
best_guesses_5ice_qfix[4] = [[x[0] for x in best_guesses_5ice_qfix[4]], [x[1] for x in best_guesses_5ice_qfix[4]]]
best_guesses_5ice_qfix[5] = [[x[0] for x in best_guesses_5ice_qfix[5]], [x[1] for x in best_guesses_5ice_qfix[5]]]
best_guesses_5ice_qfix[6] = [[x[0] for x in best_guesses_5ice_qfix[6]], [x[1] for x in best_guesses_5ice_qfix[6]]]
# z = np.polyfit(best_guesses[0], best_guesses[1], 1)
# p = np.poly1d(z)
# z1 = np.polyfit(best_guesses[0], best_guesses[2], 1)
# p1 = np.poly1d(z1)
# z2 = np.polyfit(best_guesses[1], best_guesses[2], 1)
# p2 = np.poly1d(z2)
with open("weird_q.txt", "w") as output:
for filename in weird_q:
output.write(str(filename.split('_')[0]) + '\n')
# ##Parameters distribution
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
# fig.set_size_inches(16, 9)
# fig.subplots_adjust(wspace=0.3)
# ax1.scatter(best_guesses[0], best_guesses[1], label='onepl', alpha = 0.7)
# ax1.scatter(best_guesses_gauss[0], best_guesses_gauss[1], label='gauss', alpha = 0.7)
# # ax1.scatter(best_guesses_10ice[0], best_guesses_10ice[1], label='10% ice')
# # ax1.plot(best_guesses[0],p(best_guesses[0]),"r--")
# ax1.legend()
# ax1.set(xlabel='mdust', ylabel='q')
# ax1.set_xscale('log')
# ax1.set_xlim([min(best_guesses[0])*0.1, max(best_guesses[0])*10])
# ax1.set_title('mdust vs. q')
# ax2.scatter(best_guesses[0], best_guesses[2], label='onepl', alpha = 0.7)
# ax2.scatter(best_guesses_gauss[0], best_guesses_gauss[2], label='gauss', alpha = 0.7)
# # ax2.scatter(best_guesses_10ice[0], best_guesses_10ice[2], label='10% ice')
# # ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
# ax2.legend()
# ax2.set(xlabel='mdust', ylabel='amin')
# ax2.set_xscale('log')
# ax2.set_xlim([min(best_guesses[0])*0.1, max(best_guesses[0])*10])
# ax2.set_title('mdust vs. amin')
# ax3.scatter(best_guesses[1], best_guesses[2], label='onepl', alpha = 0.7)
# ax3.scatter(best_guesses_gauss[1], best_guesses_gauss[2], label='gauss', alpha = 0.7)
# # ax3.scatter(best_guesses[1], best_guesses[2], label='10% ice')
# # ax3.plot(best_guesses[1],p2(best_guesses[1]),"r--")
# ax3.legend()
# ax3.set(xlabel='q', ylabel='amin')
# ax3.set_xlim([min(best_guesses[1])-0.5, max(best_guesses[1])+0.5])
# ax3.set_title('q vs. amin')
# fig.savefig('distribution.png', dpi=1200)
# plt.close()
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.set_size_inches(16, 9)
fig.subplots_adjust(wspace=0.3)
ax1.scatter(best_guesses_gauss[0], best_guesses_gauss[1], label='astrosil', alpha = 0.5)
ax1.scatter(best_guesses_10ice[0], best_guesses_10ice[1], label='10% ice', alpha = 0.5)
ax1.scatter(best_guesses_20ice[0], best_guesses_20ice[1], label='20% ice', alpha = 0.5)
ax1.scatter(best_guesses_5ice[0], best_guesses_5ice[1], label='5% ice', alpha = 0.5)
# ax1.errorbar(best_guesses_gauss[0], best_guesses_gauss[1], yerr=best_guesses_gauss[4], fmt="o", alpha = 0.8)
# ax1.errorbar(best_guesses_10ice[0], best_guesses_10ice[1], yerr=best_guesses_10ice[4], fmt="o", alpha = 0.8)
# ax1.errorbar(best_guesses_20ice[0], best_guesses_20ice[1], yerr=best_guesses_20ice[4], fmt="o", alpha = 0.8)
# ax1.errorbar(best_guesses_5ice[0], best_guesses_5ice[1], yerr=best_guesses_5ice[4], fmt="o", alpha = 0.8)
# ax1.plot(best_guesses[0],p(best_guesses[0]),"r--")
ax1.legend()
ax1.set(xlabel='mdust', ylabel='q')
ax1.set_xscale('log')
ax1.set_xlim([min(best_guesses_gauss[0])*0.1, max(best_guesses_gauss[0])*10])
ax1.set_title('mdust vs. q')
ax2.scatter(best_guesses_gauss[0], best_guesses_gauss[2], label='astrosil', alpha = 0.5)
ax2.scatter(best_guesses_10ice[0], best_guesses_10ice[2], label='10% ice', alpha = 0.5)
ax2.scatter(best_guesses_20ice[0], best_guesses_20ice[2], label='20% ice', alpha = 0.5)
ax2.scatter(best_guesses_5ice[0], best_guesses_5ice[2], label='5% ice', alpha = 0.5)
# ax2.errorbar(best_guesses_gauss[0], best_guesses_gauss[2], yerr=best_guesses_gauss[5], fmt="o", alpha = 0.8)
# ax2.errorbar(best_guesses_10ice[0], best_guesses_10ice[2], yerr=best_guesses_10ice[5], fmt="o", alpha = 0.8)
# ax2.errorbar(best_guesses_20ice[0], best_guesses_20ice[2], yerr=best_guesses_20ice[5], fmt="o", alpha = 0.8)
# ax2.errorbar(best_guesses_5ice[0], best_guesses_5ice[2], yerr=best_guesses_5ice[5], fmt="o", alpha = 0.8)
# ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
ax2.legend()
ax2.set(xlabel='mdust', ylabel='amin')
ax2.set_xscale('log')
ax2.set_xlim([min(best_guesses_gauss[0])*0.1, max(best_guesses_gauss[0])*10])
ax2.set_title('mdust vs. amin')
ax3.scatter(best_guesses_gauss[1], best_guesses_gauss[2], label='astrosil', alpha = 0.5)
ax3.scatter(best_guesses_10ice[1], best_guesses_10ice[2], label='10% ice', alpha = 0.5)
ax3.scatter(best_guesses_20ice[1], best_guesses_20ice[2], label='20% ice', alpha = 0.5)
ax3.scatter(best_guesses_5ice[1], best_guesses_5ice[2], label='5% ice', alpha = 0.5)
# ax3.errorbar(best_guesses_gauss[1], best_guesses_gauss[2], yerr=best_guesses_gauss[6], fmt="o", alpha = 0.8)
# ax3.errorbar(best_guesses_10ice[1], best_guesses_10ice[2], yerr=best_guesses_10ice[6], fmt="o", alpha = 0.8)
# ax3.errorbar(best_guesses_20ice[1], best_guesses_20ice[2], yerr=best_guesses_20ice[6], fmt="o", alpha = 0.8)
# ax3.errorbar(best_guesses_5ice[1], best_guesses_5ice[2], yerr=best_guesses_5ice[6], fmt="o", alpha = 0.8)
# ax3.plot(best_guesses[1],p2(best_guesses[1]),"r--")
ax3.legend()
ax3.set(xlabel='q', ylabel='amin')
ax3.set_xlim([min(best_guesses_gauss[1])-0.5, max(best_guesses_gauss[1])+0.5])
ax3.set_title('q vs. amin')
fig.suptitle('Parameters Distribution')
fig.savefig('distribution_4runs.jpg', dpi=800)
plt.close()
# ##Parameters vs luminosity
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
# fig.set_size_inches(16, 9)
# fig.subplots_adjust(wspace=0.3)
# ax1.scatter(best_guesses[3], best_guesses[1], label='onepl', alpha = 0.7)
# ax1.scatter(best_guesses_gauss[3], best_guesses_gauss[1], label='gauss', alpha = 0.7)
# # ax1.plot(best_guesses[0],p(best_guesses[0]),"r--")
# ax1.legend()
# ax1.set(xlabel='lstar', ylabel='q')
# ax1.set_xscale('log')
# ax1.set_xlim([min(best_guesses[3])*.1, max(best_guesses[3])*10])
# ax1.set_ylim([min(best_guesses[1])-0.5, max(best_guesses[1])+0.5])
# ax1.set_title('lstar vs. q')
# ax2.scatter(best_guesses[3], best_guesses[2], label='onepl', alpha = 0.7)
# ax2.scatter(best_guesses_gauss[3], best_guesses_gauss[2], label='gauss', alpha = 0.7)
# # ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
# ax2.legend()
# ax2.set(xlabel='lstar', ylabel='amin')
# ax2.set_xscale('log')
# ax2.set_yscale('log')
# ax2.set_xlim([min(best_guesses[3])*.1, max(best_guesses[3])*10])
# ax2.set_ylim([min(best_guesses[2])*.9, max(best_guesses[2])*1.1])
# ax2.set_title('lstar vs. amin')
# ax3.scatter(best_guesses[3], best_guesses[0], label='onepl', alpha = 0.7)
# ax3.scatter(best_guesses_gauss[3], best_guesses_gauss[0], label='gauss', alpha = 0.7)
# # ax3.plot(best_guesses[1],p2(best_guesses[1]),"r--")
# ax3.legend()
# ax3.set(xlabel='lstar', ylabel='mdust')
# ax3.set_xscale('log')
# ax3.set_yscale('log')
# ax3.set_xlim([min(best_guesses[3])*.1, max(best_guesses[3])*10])
# ax3.set_ylim([min(best_guesses[0])*.5, max(best_guesses[0])*5])
# ax3.set_title('lstar vs. mdust')
# fig.savefig('distribution_lstar_gaussvsonepl.png', dpi=1200)
# plt.close()
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.set_size_inches(16, 9)
fig.subplots_adjust(wspace=0.3)
ax1.scatter(best_guesses_gauss[3], best_guesses_gauss[1], label='astrosil', alpha = 0.7)
ax1.scatter(best_guesses_10ice[3], best_guesses_10ice[1], label='10% ice', alpha = 0.7)
ax1.scatter(best_guesses_20ice[3], best_guesses_20ice[1], label='20% ice', alpha = 0.5)
ax1.scatter(best_guesses_5ice[3], best_guesses_5ice[1], label='5% ice', alpha = 0.5)
# ax1.plot(best_guesses[0],p(best_guesses[0]),"r--")
ax1.legend()
ax1.set(xlabel='lstar', ylabel='q')
ax1.set_xscale('log')
ax1.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax1.set_ylim([min(best_guesses_gauss[1])-0.5, max(best_guesses_gauss[1])+0.5])
ax1.set_title('lstar vs. q')
ax2.scatter(best_guesses_gauss[3], best_guesses_gauss[2], label='astrosil', alpha = 0.7)
ax2.scatter(best_guesses_10ice[3], best_guesses_10ice[2], label='10% ice', alpha = 0.7)
ax2.scatter(best_guesses_20ice[3], best_guesses_20ice[2], label='20% ice', alpha = 0.5)
ax2.scatter(best_guesses_5ice[3], best_guesses_5ice[2], label='5% ice', alpha = 0.5)
# ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
ax2.legend()
ax2.set(xlabel='lstar', ylabel='amin')
ax2.set_xscale('log')
ax2.set_yscale('log')
ax2.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax2.set_ylim([min(best_guesses_gauss[2])*.9, max(best_guesses_gauss[2])*1.1])
ax2.set_title('lstar vs. amin')
ax3.scatter(best_guesses_gauss[3], best_guesses_gauss[0], label='astrosil', alpha = 0.7)
ax3.scatter(best_guesses_10ice[3], best_guesses_10ice[0], label='10% ice', alpha = 0.7)
ax3.scatter(best_guesses_20ice[3], best_guesses_20ice[0], label='20% ice', alpha = 0.5)
ax3.scatter(best_guesses_5ice[3], best_guesses_5ice[0], label='5% ice', alpha = 0.5)
# ax3.plot(best_guesses[1],p2(best_guesses[1]),"r--")
ax3.legend()
ax3.set(xlabel='lstar', ylabel='mdust')
ax3.set_xscale('log')
ax3.set_yscale('log')
ax3.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax3.set_ylim([min(best_guesses_gauss[0])*.5, max(best_guesses_gauss[0])*5])
ax3.set_title('lstar vs. mdust')
fig.suptitle('Parameters vs. luminosity')
fig.savefig('distribution_lstar_4runs.jpg', dpi=800)
plt.close()
fig, (ax2, ax3) = plt.subplots(1, 2)
fig.set_size_inches(16, 9)
fig.subplots_adjust(wspace=0.3)
ax2.scatter(best_guesses_gauss_qfix[3], best_guesses_gauss_qfix[2], label='astrosil', alpha = 0.7)
ax2.scatter(best_guesses_10ice_qfix[3], best_guesses_10ice_qfix[2], label='10% ice', alpha = 0.7)
ax2.scatter(best_guesses_20ice_qfix[3], best_guesses_20ice_qfix[2], label='20% ice', alpha = 0.5)
ax2.scatter(best_guesses_5ice_qfix[3], best_guesses_5ice_qfix[2], label='5% ice', alpha = 0.5)
# ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
ax2.legend()
ax2.set(xlabel='lstar', ylabel='amin')
ax2.set_xscale('log')
ax2.set_yscale('log')
ax2.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax2.set_ylim([min(best_guesses_gauss[2])*.9, max(best_guesses_gauss[2])*1.1])
ax2.set_title('lstar vs. amin')
ax3.scatter(best_guesses_gauss_qfix[3], best_guesses_gauss_qfix[0], label='astrosil', alpha = 0.7)
ax3.scatter(best_guesses_10ice_qfix[3], best_guesses_10ice_qfix[0], label='10% ice', alpha = 0.7)
ax3.scatter(best_guesses_20ice_qfix[3], best_guesses_20ice_qfix[0], label='20% ice', alpha = 0.5)
ax3.scatter(best_guesses_5ice_qfix[3], best_guesses_5ice_qfix[0], label='5% ice', alpha = 0.5)
# ax3.plot(best_guesses[1],p2(best_guesses[1]),"r--")
ax3.legend()
ax3.set(xlabel='lstar', ylabel='mdust')
ax3.set_xscale('log')
ax3.set_yscale('log')
ax3.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax3.set_ylim([min(best_guesses_gauss[0])*.5, max(best_guesses_gauss[0])*5])
ax3.set_title('lstar vs. mdust')
fig.suptitle('Parameters vs. luminosity fixed q')
fig.savefig('distribution_lstar_4runs_fixedq.jpg', dpi=800)
plt.close()
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.set_size_inches(16, 9)
fig.subplots_adjust(wspace=0.3)
ax1.scatter(best_guesses_gauss_qfix[0], best_guesses_gauss_qfix[1], label='astrosil', alpha = 0.7)
ax1.scatter(best_guesses_10ice_qfix[0], best_guesses_10ice_qfix[1], label='10% ice', alpha = 0.7)
ax1.scatter(best_guesses_20ice_qfix[0], best_guesses_20ice_qfix[1], label='20% ice', alpha = 0.5)
ax1.scatter(best_guesses_5ice_qfix[0], best_guesses_5ice_qfix[1], label='5% ice', alpha = 0.5)
# ax1.plot(best_guesses[0],p(best_guesses[0]),"r--")
ax1.legend()
ax1.set(xlabel='mdust', ylabel='q')
ax1.set_xscale('log')
ax1.set_xlim([min(best_guesses_gauss[0])*0.1, max(best_guesses_gauss[0])*10])
ax1.set_title('mdust vs. q')
ax2.scatter(best_guesses_gauss_qfix[0], best_guesses_gauss_qfix[2], label='astrosil', alpha = 0.7)
ax2.scatter(best_guesses_10ice_qfix[0], best_guesses_10ice_qfix[2], label='10% ice', alpha = 0.7)
ax2.scatter(best_guesses_20ice_qfix[0], best_guesses_20ice_qfix[2], label='20% ice', alpha = 0.5)
ax2.scatter(best_guesses_5ice_qfix[0], best_guesses_5ice_qfix[2], label='5% ice', alpha = 0.5)
# ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
ax2.legend()
ax2.set(xlabel='mdust', ylabel='amin')
ax2.set_xscale('log')
ax2.set_xlim([min(best_guesses_gauss[0])*0.1, max(best_guesses_gauss[0])*10])
ax2.set_title('mdust vs. amin')
ax3.scatter(best_guesses_gauss_qfix[1], best_guesses_gauss_qfix[2], label='astrosil', alpha = 0.7)
ax3.scatter(best_guesses_10ice_qfix[1], best_guesses_10ice_qfix[2], label='10% ice', alpha = 0.7)
ax3.scatter(best_guesses_20ice_qfix[1], best_guesses_20ice_qfix[2], label='20% ice', alpha = 0.5)
ax3.scatter(best_guesses_5ice_qfix[1], best_guesses_5ice_qfix[2], label='5% ice', alpha = 0.5)
# ax3.plot(best_guesses[1],p2(best_guesses[1]),"r--")
ax3.legend()
ax3.set(xlabel='q', ylabel='amin')
ax3.set_xlim([min(best_guesses_gauss[1])-0.5, max(best_guesses_gauss[1])+0.5])
ax3.set_title('q vs. amin')
fig.suptitle('Parameters distribution fixed q')
fig.savefig('distribution_4runs_fixedq.jpg', dpi=800)
plt.close()
fig, (ax1, ax2) = plt.subplots(2, 1)
fig.set_size_inches(7, 6)
fig.subplots_adjust(wspace=0.3)
ax1.scatter(best_guesses_gauss[3], best_guesses_gauss[1], label='astrosil', alpha = 0.7)
ax1.scatter(best_guesses_10ice[3], best_guesses_10ice[1], label='10% ice', alpha = 0.7)
ax1.scatter(best_guesses_20ice[3], best_guesses_20ice[1], label='20% ice', alpha = 0.5)
ax1.scatter(best_guesses_5ice[3], best_guesses_5ice[1], label='5% ice', alpha = 0.5)
# ax1.plot(best_guesses[0],p(best_guesses[0]),"r--")
ax1.legend()
ax1.set(ylabel='q')
ax1.set_xscale('log')
ax1.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax1.set_ylim(-4.25, -2.75)
ax1.invert_yaxis()
# ax1.set_title('lstar vs. q')
ax2.scatter(best_guesses_gauss[3], best_guesses_gauss[2], label='astrosil', alpha = 0.7)
ax2.scatter(best_guesses_10ice[3], best_guesses_10ice[2], label='10% ice', alpha = 0.7)
ax2.scatter(best_guesses_20ice[3], best_guesses_20ice[2], label='20% ice', alpha = 0.5)
ax2.scatter(best_guesses_5ice[3], best_guesses_5ice[2], label='5% ice', alpha = 0.5)
# ax2.plot(best_guesses[0],p1(best_guesses[0]),"r--")
ax2.legend()
ax2.set(xlabel='lstar', ylabel='amin')
ax2.set_xscale('log')
ax2.set_yscale('log')
ax2.set_xlim([min(best_guesses_gauss[3])*.1, max(best_guesses_gauss[3])*10])
ax2.set_ylim([min(best_guesses_gauss[2])*.9, max(best_guesses_gauss[2])*1.1])
# ax2.set_title('lstar vs. amin')
fig.suptitle('Parameters vs. luminosity')
fig.savefig('distribution_lstar_comp.jpg', dpi=800)
plt.close()