-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRT_Code.py
643 lines (487 loc) · 22.1 KB
/
RT_Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 4 11:42:22 2020
@author: jonty
"""
import numpy as np
import miepython as mpy
from numba import jit
import copy
from astropy.io import ascii
from scipy import interpolate
from scipy.optimize import curve_fit
#constants
h = 6.626e-34
c = 299792458.0 # m/s
k = 1.38e-23
sb = 5.67e-8 #
au = 1.495978707e11 # m
pc = 3.0857e16 # m
lsol = 3.828e26 # W
rsol = 6.96342e8 # m
MEarth = 5.97237e24 # kg
um = 1e-6 #for wavelengths in microns
class RTModel:
def __init__(self):
#print("Instantiated radiative transfer model object.")
self.parameters = {}
self.sed_emit = 0.0
self.sed_scat = 0.0
self.sed_disc = 0.0
self.sed_star = 0.0
self.sed_wave = 0.0
self.obs_flux = None
self.obs_uncs = None
self.obs_wave = None
def get_parameters(self,filename):
"""
Parameters
----------
filename : string
Filename containing plain text name/value pairs for model values
Returns
-------
parameters : Dictionary
Dictionary of parameters for the model.
"""
with open(filename) as f:
for line in f:
line = line.split('#', 1)[0]
if len(line) > 0:
line = line.split(':')
#print(line)
try:
self.parameters[line[0].rstrip()] = float(line[1])
except:
line[1].strip()
self.parameters[line[0].rstrip()] = str(line[1][1:-1])
return self.parameters
@jit(nopython=True,cache=True)
def planck_lam(wav, T):
"""
Parameters
----------
lam : float or array
Wavelengths in metres.
T : float
Temperature in Kelvin.
Returns
-------
intensity : float or array
B(lam,T) W/m^2/m/sr
"""
a = 2.0*h*c**2
b = h*c/(wav*k*T)
intensity = a/ ( (wav**5) * (np.exp(b) - 1.0) )
return intensity
@jit(nopython=True,cache=True)
def planck_nu(freq, T):
"""
Parameters
----------
freq : float or array
Frequencies in Hertz.
T : float
Temperature in Kelvin.
Returns
-------
intensity : float or array
B(nu,T) W/m^2/Hz/sr
"""
a = 2.0*h*freq**3
b = h*freq/(k*T)
intensity = a/ ( (c**2) * (np.exp(b) - 1.0) )
return intensity
#calculate the luminosity of the source
@jit(nopython=True)
def calc_luminosity(rstar,tstar):
"""
Parameters
----------
rstar : float
Radius of the star in R_sol.
tstar : float
Temperature of the star in Kelvin.
Returns
-------
lphot : float
L_star in L_solar
"""
lphot= (4.0*np.pi*sb*(rstar*rsol)**2*tstar**4) / lsol
return lphot
#@jit(nopython=True,cache=True)
def make_star(self):
"""
Function to either create a star using a blackbody, or read in a
photosphere model.
Returns
-------
wavelengths : float array
Wavelengths in microns in ascending order.
photosphere : float array
Photospheric flux density in mJy in ascending order.
"""
if self.parameters['stype'] != 'blackbody' and \
self.parameters['stype'] != 'spectrum' and \
self.parameters['stype'] != 'json' and \
self.parameters['stype'] != 'starfish':
print("Input 'stype' must be one of 'blackbody', 'spectrum', 'json', or 'starfish'.")
if self.parameters['stype'] == 'blackbody':
lstar = self.parameters['lstar']
rstar = self.parameters['rstar']
tstar = self.parameters['tstar']
dstar = self.parameters['dstar']
lmin = self.parameters['lmin']
lmax = self.parameters['lmax']
nwav = int(self.parameters['nwav'])
wavelengths = np.logspace(np.log10(lmin),np.log10(lmax),num=nwav,base=10.0,endpoint=True) #um
photosphere = RTModel.planck_lam(wavelengths*um,tstar) # W/m2/sr/m
photosphere = np.pi * 1e26 * photosphere * ((rstar*rsol)/(dstar*pc))**2 # W/m2/m
self.sed_wave = wavelengths # um
self.sed_star = photosphere # mJy
elif self.parameters['stype'] == 'spectrum':
lambdas,photosphere = RTModel.read_star(self) #returns wavelength, stellar spectrum in um, mJy
lstar = self.parameters['lstar']
rstar = self.parameters['rstar']
dstar = self.parameters['dstar']
lmin = self.parameters['lmin']
lmax = self.parameters['lmax']
nwav = int(self.parameters['nwav'])
wavelengths = np.logspace(np.log10(lmin),np.log10(lmax),num=nwav,base=10.0,endpoint=True)
if np.max(wavelengths) > np.max(lambdas):
interp_lam_arr = np.logspace(np.log10(lambdas[-1]),np.log10(1.1*wavelengths[-1]),num=nwav,base=10.0,endpoint=True)
interp_pht_arr = photosphere[-1]*(lambdas[-1]/interp_lam_arr)**4
lambdas = np.append(lambdas,interp_lam_arr)
photosphere = np.append(photosphere,interp_pht_arr)
photosphere = np.interp(wavelengths,lambdas,photosphere)
photosphere = np.pi * photosphere*1e26*((rstar*rsol)/(dstar*pc))**2
self.sed_wave = wavelengths #um
self.sed_star = photosphere #flam
elif self.parameters['stype'] == 'json':
lambdas,photosphere = RTModel.read_json(self) #returns wavelength, stellar spectrum in um, mJy
lstar = self.parameters['lstar']
rstar = self.parameters['rstar']
dstar = self.parameters['dstar']
lmin = self.parameters['lmin']
lmax = self.parameters['lmax']
nwav = int(self.parameters['nwav'])
wavelengths = np.logspace(np.log10(lmin),np.log10(lmax),num=nwav,base=10.0,endpoint=True)
if np.max(wavelengths) > np.max(lambdas):
interp_lam_arr = np.logspace(np.log10(lambdas[-1]),np.log10(1.1*wavelengths[-1]),num=nwav,base=10.0,endpoint=True)
interp_pht_arr = photosphere[-1]*(lambdas[-1]/interp_lam_arr)**4
lambdas = np.append(lambdas,interp_lam_arr)
photosphere = np.append(photosphere,interp_pht_arr)
photosphere = np.interp(wavelengths,lambdas,photosphere)
photosphere = np.pi * photosphere*1e26*((rstar*rsol)/(dstar*pc))**2 #convert fnu -> flam
self.sed_wave = wavelengths #um
self.sed_star = photosphere #flam
elif self.parameters['stype'] == 'starfish':
print("starfish model not yet implemented.")
def read_json(self):
"""
Function to read in a stellar photosphere model from a json file.
Stellar photosphere model is assumed to have wavelengths in microns,
and flux density in mJy.
Parameters
----------
star_params : Dictionary
Stellar parameters.
Returns
-------
model_waves : float array
Wavelengths in microns in ascending order.
model_spect : float array
Photospheric flux density in mJy in ascending order.
"""
import json
spectrum_file = self.parameters['model']
data = json.load(open(spectrum_file))
model_waves = np.asarray(data['star_spec']['wavelength']) #um
model_spect = np.asarray(data['star_spec']['fnujy'])/(model_waves*um)**2 #erg/cm2/s/A (from Jy)
return model_waves,model_spect
def read_star(self):
"""
Function to read in a stellar photosphere model from the SVO database.
Stellar photosphere model is assumed to have wavelengths in Angstroms,
and flux density in erg/s/cm^2/A.
The function will extrapolate to the longest wavelength required in the
model, if necessary.
Parameters
----------
star_params : Dictionary
Stellar parameters.
Returns
-------
model_waves : float array
Wavelengths in microns in ascending order.
model_spect : float array
Photospheric flux density in W/m2/m in ascending order.
"""
spectrum_file = self.parameters['model']
data = ascii.read(spectrum_file,comment='#',names=['Wave','Flux'])
model_waves = data['Wave'].data #Angstroms
model_spect = data['Flux'].data #Ergs/cm**2/s/A
model_waves = model_waves*1e-4 #um
model_spect *= 1e-7*1e4*1e10 #W/m2/m
return model_waves, model_spect
#Scale photosphere model to observations after creation
def scale_star(self):
#Observations and stellar photosphere model
fobs = np.asarray(self.obs_flux)
lobs = np.asarray(self.obs_wave)
uobs = np.asarray(self.obs_uncs)
ind = np.where((lobs >= 0.44)&(lobs < 15.))
fobs = fobs[ind]
lobs = lobs[ind]
uobs = uobs[ind]
#interpolate model at observed wavelengths
f = interpolate.interp1d(self.sed_wave,self.sed_star)
sint = f(lobs)
def func(x,a):
return x*a
popt, pcov = curve_fit(func, sint, fobs,sigma=uobs)
self.sed_star *= popt[0]
#set up power law size distribution for the dust model
def make_dust(self):
"""
Function to calculate dust grain sizes, numbers, and masses.
Returns
-------
None.
"""
amin = self.parameters['amin']
amax = self.parameters['amax']
rho = self.parameters['density']
ngrain = int(self.parameters['ngrain'])
mdust = self.parameters['mdust']
q = self.parameters['q']
grain_sizes = np.logspace(np.log10(amin),np.log10(amax),num=ngrain,base=10.0,endpoint=True)
grain_numbers = (grain_sizes)**q
grain_masses = rho*1e3*(4./3.)*np.pi*((um*grain_sizes)**3) # kg
disc_masses = (grain_masses*grain_numbers)
disc_mass_scale = (mdust*MEarth/np.sum(disc_masses))
grain_numbers = grain_numbers*disc_mass_scale
self.ag = grain_sizes
self.ng = grain_numbers
self.mg = grain_masses
#return grain_sizes, grain_numbers, grain_masses
def read_optical_constants(self):
"""
Function to read in optical constants from a text file.
Returns
-------
dl : float array
Wavelength array of dust optical constants in microns.
dn : float array
Real part of refractive index of dust optical constants.
dk : float array
Imaginary part of refractive index of dust optical constants.
"""
composition_file = self.parameters["composition"]+'.lnk'
data = ascii.read(composition_file,comment='#')
dl = data["col1"].data
dn = data["col2"].data
dk = data["col3"].data
dust_n = np.interp(self.sed_wave,dl,dn)
dust_k = np.interp(self.sed_wave,dl,dk)
dust_nk = dust_n - 1j*np.abs(dust_k)
self.oc_nk = dust_nk
#return dl,dn,dk
def make_disc(self):
"""
Function to make up the radial dust density distribution.
Returns
-------
scale : Float array
Fractional contribution of the total number of dust grains in each
annulus/radial location.
radii : Float array
Radial locations for the disc emission to be calculated at.
"""
if self.parameters["dtype"] == 'gauss':
#print("Gaussian ring surface density model")
rpeak = self.parameters["rpeak"]
rfwhm = self.parameters["rfwhm"]
nring = int(self.parameters["nring"])
lower = rpeak - 3.0*(rfwhm/2.355)
upper = rpeak + 3.0*(rfwhm/2.355)
if lower < 0.:
lower = 1.0
radii = np.linspace(lower,upper,num=nring,endpoint=True)
rings = np.exp(-0.5*((radii - rpeak)/(rfwhm/2.355))**2)
scale = rings/np.sum(rings)
elif self.parameters["dtype"] == 'onepl':
#print("Single power law surface density model")
rin = self.parameters["rin"]
rout = self.parameters["rout"]
alpha = self.parameters["alpha_out"]
nring = int(self.parameters["nring"])
radii = np.linspace(rin,rout,num=nring,endpoint=True)
rings = (radii/rin)**alpha
scale = rings / np.sum(rings)
elif self.parameters["dtype"] == 'twopl':
#print("Two power law surface density model")
rin = self.parameters["rin"]
rout = self.parameters["rout"]
rpeak = self.parameters["rpeak"]
alpha = self.parameters["alpha_in"]
gamma = self.parameters["alpha_out"]
nring = int(self.parameters["nring"])
radii = np.linspace(rin,rout,num=nring,endpoint=True)
rings = (radii/rpeak)**alpha
outer = np.where(radii > rpeak)
rings[outer] = (radii[outer]/rpeak)**gamma
scale = rings / np.sum(rings)
elif self.parameters["dtype"] == 'arbit':
print("Arbitrary density distribution has not yet been implemented.")
else:
print("Model type must be one of 'onepl','twopl', 'gauss', or 'arbit'.")
self.scale = scale
self.radii = radii
self.dr = (radii[-1] - radii[0]) / nring
self.areas = ((self.radii + 0.5*self.dr)**2 - (self.radii - 0.5*self.dr)**2)*au**2
self.scale = self.scale*(self.areas/self.areas[0])
self.scale = self.scale/np.sum(self.scale)
#return scale, radii
def calculate_surface_density(self):
"""
Function to calculate radial surface number density of the disc.
"""
self.sigma = np.zeros((int(self.parameters["nring"]),int(self.parameters["ngrain"])))
if self.parameters["dtype"] == 'gauss':
for ii in range(0,int(self.parameters["nring"])):
for ij in range(0,int(self.parameters["ngrain"])):
self.sigma[ii,ij] = self.scale[ii]*self.ng[ij]
elif self.parameters["dtype"] == 'onepl':
for ii in range(0,int(self.parameters["nring"])):
for ij in range(0,int(self.parameters["ngrain"])):
self.sigma[ii,ij] = self.scale[ii]*self.ng[ij]
elif self.parameters["dtype"] == 'twopl':
for ii in range(0,int(self.parameters["nring"])):
for ij in range(0,int(self.parameters["ngrain"])):
self.sigma[ii,ij] = self.scale[ii]*self.ng[ij]
#@jit(nopython=True)
def calculate_dust_temperature(self,radius,qabs,mode='bb',tolerance=1e-3):
"""
Function to calculate the temperature of a dust grain at a given distance from the star.
Parameters
----------
radius : Float
Element of self.radii to fit temperature for.
qabs : Float array
Absorption coefficients for grain size ag across all wavelengths.
blackbody : True/False
Keyword for implementing iterative dust temperature calculation.
tolerance :
Maximum allowed difference between computed radius and ring element
Returns
-------
td : Float
Dust temperature in Kelvin.
"""
lstar = self.parameters["lstar"]
rstar = self.parameters["rstar"]
tstar = self.parameters["tstar"]
dstar = self.parameters["dstar"]
if mode != 'bb' and mode != 'full':
print("Dust temperature calculation mode must be one of 'bb' or 'full'.")
if mode == 'bb':
td = 278.*(lstar**0.25)*(radius**(-0.5))
else:
# td = 278.*(lstar**0.25)*(radius**(-0.5)) #inital guess temperature at blackbody temperature
factor = 0.5*((rstar*rsol)/au)
dust_absr1 = np.trapz(qabs*RTModel.planck_lam(self.sed_wave*um,tstar),self.sed_wave*um)
if self.parameters["stype"] == 'blackbody':
dust_absr = np.trapz(qabs*RTModel.planck_lam(self.sed_wave*um,tstar),self.sed_wave*um)
elif self.parameters["stype"] == 'spectrum' or self.parameters['stype'] == 'json':
dust_absr = np.trapz(qabs*1e-26*self.sed_star*((dstar*pc)/(rstar*rsol))**2,self.sed_wave*um)
tlo = 2.73
thi = tstar
tmi = 0.5*(thi + tlo)
tguess = tmi
#print(thi,tlo,tguess,tprev,delta,np.min(self.radii),np.max(self.radii),self.dr)
delta = 1e30
while abs(delta) > tolerance:
dust_emit = np.trapz(qabs*RTModel.planck_lam(self.sed_wave*um,tguess),self.sed_wave*um)
rdust = factor*(dust_absr/dust_emit)**0.5
delta = (radius - rdust) / radius
if delta < 0.0 :
thi = thi
tlo = tguess
elif delta >= 0.0 :
thi = tguess
tlo = tlo
tguess = 0.5*(thi + tlo)
if abs(delta) < tolerance:
td = tguess
#print(thi,tlo,tguess,delta,tolerance)
return td
def calculate_qabs(self):
"""
Function to calculate the qabs,qsca values for the grains in the model.
Returns
-------
None.
"""
self.qext = np.zeros((int(self.parameters['ngrain']),int(self.parameters['nwav'])))
self.qsca = np.zeros((int(self.parameters['ngrain']),int(self.parameters['nwav'])))
for ii in range(0,int(self.parameters['ngrain'])):
x = 2.*np.pi*self.ag[ii]/self.sed_wave
qext, qsca, qback, g = mpy.mie(self.oc_nk,x)
self.qext[ii,:] = qext
self.qsca[ii,:] = qsca
self.qabs = self.qext - self.qsca
def calculate_dust_scatter(self):
"""
Function to calculate the scattered light contribution to the total emission from the disc.
"""
self.sed_rings = np.zeros((int(self.parameters['nring']),int(self.parameters['nwav'])))
for ii in range(0,int(self.parameters['nring'])):
for ij in range(0,int(self.parameters['ngrain'])):
alb = self.qsca[ij,:]/self.qext[ij,:]
scalefactor = self.qsca[ij,:]*alb*self.sigma[ii,ij]*np.pi*((self.ag[ij]*um)**2) / (2*self.radii[ii]*au)**2
self.sed_rings[ii,:] = scalefactor * self.sed_star
self.sed_scat += self.sed_rings[ii,:]
self.sed_disc += self.sed_scat
def calculate_dust_emission(self,*args,**kwargs):
"""
Function to calculate the continuum emission contribution to the total emission from the disc.
Parameters
----------
mode : 'bb'/'full'
Keyword for implementing iterative dust temperature calculation.
tolerance :
Maximum allowed difference between computed radius and ring element
"""
#Calculate dust temperatures
self.tdust = np.zeros((int(self.parameters["nring"]),int(self.parameters["ngrain"])))
self.sed_ringe = np.zeros((int(self.parameters["nring"]),int(self.parameters["ngrain"]),int(self.parameters["nwav"])))
#Calculate emission
for ii in range(0,int(self.parameters['nring'])):
for ij in range(0,int(self.parameters['ngrain'])):
scalefactor = 1e3* (2.*np.pi**2/((self.parameters['dstar']*pc)**2))*self.sigma[ii,ij]*(self.radii[ii]*au)**2*(self.ag[ij]*um)**3
self.tdust[ii,ij] = RTModel.calculate_dust_temperature(self,self.radii[ii],self.qabs[ij,:],mode='full',tolerance=1e-3)
self.sed_ringe[ii,ij,:] = scalefactor*self.qabs[ij,:]*RTModel.planck_lam(self.sed_wave*um,self.tdust[ii,ij])
#self.sed_ringe = np.zeros((int(self.parameters['nring']),int(self.parameters['ngrain']),int(self.parameters['nwav'])))
#for ii in range(0,int(self.parameters['nring'])):
# for ij in range(0,int(self.parameters['ngrain'])):
# qabs = (self.qext[ij,:] - self.qsca[ij,:])
# scalefactor = (2*np.pi**2/((self.parameters['dstar']*pc)**2))*qabs*self.ng[ij]*self.scale[ii]*(self.ag[ij]*um)**2
# tdust = RTModel.calculate_dust_temperature(self,self.radii[ii],qabs,**kwargs)
# self.sed_ringe[ii,ij,:] = scalefactor * RTModel.planck_lam(self.sed_wave*um, tdust)
self.sed_emit += self.sed_ringe[ii,ij,:]
self.sed_disc += self.sed_emit
def flam_to_fnu(self):
"""
Function to convert calculated stellar and disc emission (in F_lam units) to F_nu (in mJy)
Returns
-------
None.
"""
convert_factor = 1e3 * (self.sed_wave*um)**2 / c
self.sed_star *= convert_factor
self.sed_emit *= convert_factor
self.sed_ringe *= convert_factor
self.sed_scat *= convert_factor
self.sed_rings *= convert_factor