Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Correlation Between Spheres #50

Open
jessychen1016 opened this issue Apr 25, 2021 · 4 comments
Open

Correlation Between Spheres #50

jessychen1016 opened this issue Apr 25, 2021 · 4 comments

Comments

@jessychen1016
Copy link
Contributor

Hi,
Thank you so much for your wonderful work, really appreciate it! They are really easy to use. However, I did encounter some problems when trying to calculate the rotation R in SO(3) between two rotated spheres.

Basically, I followed the s2cnn/s2cnn/soft/s2_conv.py, and changed the torch kernel y with another sphere.
Now that Sphere1 and Sphere2 are passed into S2_fft_real.apply() with the results of Sphere1_FFT and Sphere2_FFT. The correlation result is then calculated by s2_mm(Sphere1, Sphere2) with slight modification in channels and shape. Then the correlation is passed to the SO3_ifft_real.apply() with the result argmax of the ZYZ angles.

I was wondering if this is the correct way of using the code to calculate rotations between two rotated spheres because by now the result seems incorrect.

Thanks in advance!!!

@mariogeiger
Copy link
Collaborator

mariogeiger commented Apr 25, 2021

It sounds good. I can't say like that what could be wrong ... maybe a transpose of conjugate missing??

@jessychen1016
Copy link
Contributor Author

jessychen1016 commented Apr 25, 2021

Hi Mario! This is quite a fast reply! Thank you :)
Here is my code:

from numpy.lib.function_base import _percentile_dispatcher
import torch
import math
import numpy as np
from s2cnn.s2_ft import s2_rft
from s2cnn.soft.so3_fft import SO3_ifft_real
from s2cnn.soft.s2_fft import S2_fft_real
from utils.utils import fftshift3d
from data.simulation_3d import get_simulation_3d
from log_sphere.log_sphere import sphere_transformer
import numpy as np

from s2cnn import s2_mm

def unravel_indices(indices,shape):
    """Converts flat indices into unraveled coordinates in a target shape.
    Args:
        indices: A tensor of (flat) indices, (*, N).
        shape: The targeted shape, (D,).
    Returns:
        The unraveled coordinates, (*, N, D).
    """
    coord = []

    for dim in reversed(shape):
        coord.append(indices % dim)
        indices = indices // dim

    coord = torch.stack(coord[::-1], dim=-1)

    return coord

template, source, rotation_gt, translation_gt, scale_gt =  get_simulation_3d(50,50,50,1)
template = torch.tensor(template[0]).float().permute(3,0,1,2)
source = torch.tensor(source[0]).float().permute(3,0,1,2)
device = torch.device("cpu")



# create two tensors on a sphere with the shape of [b,feature_in,beta,alpha]
bw_in = 25
bw_out = 25
print("grid", source.shape)
sphere1 = sphere_transformer(source.unsqueeze(-1), (50, 50, 50), device)[0].squeeze(-1)[...,20:40].sum(-1).float()
sphere2 = sphere_transformer(template.unsqueeze(-1), (50, 50, 50), device)[0].squeeze(-1)[...,20:40].sum(-1).float()

# sphere with the size of [b, theta, phi]
sphere_1_fft = S2_fft_real.apply(sphere1,bw_out)
sphere_2_fft = S2_fft_real.apply(sphere2,bw_out)

z = s2_mm(sphere_1_fft, sphere_2_fft).unsqueeze(-2)  # [l * m * n, batch, feature_out, complex]
z = SO3_ifft_real.apply(z)  # [batch, feature_out, beta, alpha, gamma]

z = z.squeeze(1)
# z = fftshift3d(z).unsqueeze(1)
cor_argmax = torch.argmax(z.view(z.size(0), z.size(1), -1), -1)

index = unravel_indices(cor_argmax, (z.size(2), z.size(3), z.size(4)))
print(index)

and the modified s2_mm is something like this:

def s2_mm(x, y):
    '''
    :param x: [l * m,     batch, complex]
    :param y: [l * m,     batch, complex]
    :return:  [l * m * n, batch, complex]
    '''
    from s2cnn.utils.complex import complex_mm

    # assert y.size(3) == 2
    # assert x.size(3) == 2
    nbatch = x.size(1)
    # nfeature_in = x.size(2)
    # nfeature_out = y.size(2)
    # assert y.size(1) == nfeature_in
    nspec = x.size(0)
    # assert y.size(0) == nspec

    # if x.is_cuda:
    #     return _cuda_S2_mm.apply(x, y)

    nl = round(nspec**0.5)

    batch_list = []
    for b in range(nbatch):
        x_batch = x[:, b, ...].unsqueeze(1) # [l * m, 1, complex]
        y_batch = y[:, b, ...].unsqueeze(1) # [l * m, 1, complex]
        Fz_list = []
        begin = 0
        for l in range(nl):
            L = 2 * l + 1
            size = L

            Fx = x_batch[begin:begin+size]  # [m, 1, complex]
            Fy = y_batch[begin:begin+size]  # [m, 1, complex]

            Fy = Fy.transpose(0, 1) # [1, m, complex]
            Fy = Fy.contiguous()

            Fz = complex_mm(Fx, Fy, conj_y=True)  # [m, m, complex]
            Fz = Fz.view(L * L, 2)  # [m * m, complex]
            # print('fffff', Fz.shape)
            Fz_list.append(Fz)

            begin += size

        z_batch = torch.cat(Fz_list, 0)  # [l * m * m, complex]

        batch_list.append(z_batch)

    z = torch.stack(batch_list, dim=1) # [l * m * m, batch, complex]
    print('shape', z.shape)
    return z

When I tried to make Sphere1 = Sphere2, the output of S2fft is consistent while the argmax coordinate keeps randomizing.

Hope this might gives you a hint on my mistakes?

@jessychen1016
Copy link
Contributor Author

Hi Mario!
So after playing with all these spherical things around for a while, I finally managed to calculate the zyz transformation between two spheres now. However, since the torch has upgraded to 1.9 and the fft APIs have changed, I tried to upgrade all these ffts in the s2_fft and the so3_fft. I believe that the last merge of these repos is somehow wrong and is not consistent with what the code
used to be, and here is my version. Could you please check the forward and backward of the S2_fft and SO3_fft below, if it is correct, I would love to request a pull to update the code.

For S2FFT

def s2_fft(x, for_grad=False, b_out=None):
    '''
    :param x: [..., beta, alpha, complex]
    :return:  [l * m, ..., complex]
    '''
    assert x.size(-1) == 2
    b_in = x.size(-2) // 2
    assert x.size(-2) == 2 * b_in
    assert x.size(-3) == 2 * b_in
    if b_out is None:
        b_out = b_in
    assert b_out <= b_in
    batch_size = x.size()[:-3]

    x = x.view(-1, 2 * b_in, 2 * b_in, 2)  # [batch, beta, alpha, complex]

    '''
    :param x: [batch, beta, alpha, complex] (nbatch, 2 * b_in, 2 * b_in, 2)
    :return: [l * m, batch, complex] (b_out**2, nbatch, 2)
    '''
    nspec = b_out ** 2
    nbatch = x.size(0)

    wigner = _setup_wigner(b_in, nl=b_out, weighted=not for_grad, device=x.device)
    wigner = wigner.view(2 * b_in, -1)  # [beta, l * m] (2 * b_in, nspec)
    x = torch.view_as_real(torch.fft.fft(torch.view_as_complex(x)))  # [batch, beta, m, complex]
    # x = torch.fft.fft(x,1)  # [batch, beta, m, complex]



    output = x.new_empty((nspec, nbatch, 2))

    cuda_kernel = _setup_s2fft_cuda_kernel(b=b_in, nspec=nspec, nbatch=nbatch, device=x.device.index)
    stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream)
    cuda_kernel(block=(1024, 1, 1),
                grid=(cuda_utils.get_blocks(nspec * nbatch, 1024), 1, 1),
                args=[x.contiguous().data_ptr(), wigner.contiguous().data_ptr(), output.data_ptr()],
                stream=stream)
    # for l in range(b_out):
    #     s = slice(l ** 2, l ** 2 + 2 * l + 1)
    #     xx = torch.cat((x[:, :, -l:], x[:, :, :l + 1]), dim=2) if l > 0 else x[:, :, :1]
    #     output[s] = torch.einsum("bm,zbmc->mzc", (wigner[:, s], xx))
    output = output.view(-1, *batch_size, 2)  # [l * m, ..., complex] (nspec, ..., 2)
    return output


def s2_ifft(x, for_grad=False, b_out=None):
    '''
    :param x: [l * m, ..., complex]
    '''
    assert x.size(-1) == 2
    nspec = x.size(0)
    b_in = round(nspec ** 0.5)
    assert nspec == b_in ** 2
    if b_out is None:
        b_out = b_in
    assert b_out >= b_in
    batch_size = x.size()[1:-1]

    x = x.view(nspec, -1, 2)  # [l * m, batch, complex] (nspec, nbatch, 2)

    '''
    :param x: [l * m, batch, complex] (b_in**2, nbatch, 2)
    :return: [batch, beta, alpha, complex] (nbatch, 2 b_out, 2 * b_out, 2)
    '''
    nbatch = x.size(1)

    wigner = _setup_wigner(b_out, nl=b_in, weighted=for_grad, device=x.device)
    wigner = wigner.view(2 * b_out, -1)  # [beta, l * m] (2 * b_out, nspec)

    cuda_kernel = _setup_s2ifft_cuda_kernel(b=b_out, nl=b_in, nbatch=nbatch, device=x.device.index)
    stream = cuda_utils.Stream(ptr=torch.cuda.current_stream().cuda_stream)
    output = x.new_empty((nbatch, 2 * b_out, 2 * b_out, 2))
    cuda_kernel(block=(1024, 1, 1),
                grid=(cuda_utils.get_blocks(nbatch * (2 * b_out) ** 2, 1024), 1, 1),
                args=[x.data_ptr(), wigner.data_ptr(), output.data_ptr()],
                stream=stream)
        # [batch, beta, m, complex] (nbatch, 2 * b_out, 2 * b_out, 2)
    # output = x.new_zeros((nbatch, 2 * b_out, 2 * b_out, 2))
    # for l in range(b_in):
    #     s = slice(l ** 2, l ** 2 + 2 * l + 1)
    #     out = torch.einsum("mzc,bm->zbmc", (x[s], wigner[:, s]))
    #     output[:, :, :l + 1] += out[:, :, -l - 1:]
    #     if l > 0:
    #         output[:, :, -l:] += out[:, :, :l]
    output = torch.view_as_real(torch.fft.ifft(torch.view_as_complex(output))) * output.size(-2)  # [batch, beta, alpha, complex]
    output = output.view(*batch_size, 2 * b_out, 2 * b_out, 2)
    return output

class S2_fft_real(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, b_out=None):  # pylint: disable=W
        from s2cnn.utils.complex import as_complex
        ctx.b_out = b_out
        ctx.b_in = x.size(-1) // 2
        return s2_fft(as_complex(x), b_out=ctx.b_out)

    @staticmethod
    def backward(ctx, grad_output):  # pylint: disable=W
        return s2_ifft(grad_output, for_grad=True, b_out=ctx.b_in)[..., 0], None

For SO3_FFT

def so3_ifft(x, for_grad=False, b_out=None):
    '''
    :param x: [l * m * n, ..., complex]
    '''
    assert x.size(-1) == 2
    nspec = x.size(0)
    b_in = round((3 / 4 * nspec) ** (1 / 3))
    assert nspec == b_in * (4 * b_in ** 2 - 1) // 3
    if b_out is None:
        b_out = b_in
    batch_size = x.size()[1:-1]

    x = x.view(nspec, -1, 2)  # [l * m * n, batch, complex] (nspec, nbatch, 2)

    '''
    :param x: [l * m * n, batch, complex] (b_in (4 b_in**2 - 1) // 3, nbatch, 2)
    :return: [batch, beta, alpha, gamma, complex] (nbatch, 2 b_out, 2 b_out, 2 b_out, 2)
    '''
    nbatch = x.size(1)

    wigner = _setup_wigner(b_out, nl=b_in, weighted=for_grad, device=x.device)  # [beta, l * m * n] (2 * b_out, nspec)

    output = x.new_empty((nbatch, 2 * b_out, 2 * b_out, 2 * b_out, 2))
    # if x.is_cuda and x.dtype == torch.float32:
    cuda_kernel = _setup_so3ifft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_output=False, device=x.device.index)
    cuda_kernel(x, wigner, output)  # [batch, beta, m, n, complex]
    # else:
    # output.fill_(0)
    # for l in range(min(b_in, b_out)):
    #     s = slice(l * (4 * l**2 - 1) // 3, l * (4 * l**2 - 1) // 3 + (2 * l + 1) ** 2)
    #     out = torch.einsum("mnzc,bmn->zbmnc", (x[s].view(2 * l + 1, 2 * l + 1, -1, 2), wigner[:, s].view(-1, 2 * l + 1, 2 * l + 1)))
    #     l1 = min(l, b_out - 1)  # if b_out < b_in
    #     output[:, :, :l1 + 1, :l1 + 1] += out[:, :, l: l + l1 + 1, l: l + l1 + 1]
    #     if l > 0:
    #         output[:, :, -l1:, :l1 + 1] += out[:, :, l - l1: l, l: l + l1 + 1]
    #         output[:, :, :l1 + 1, -l1:] += out[:, :, l: l + l1 + 1, l - l1: l]
    #         output[:, :, -l1:, -l1:] += out[:, :, l - l1: l, l - l1: l]

    output = torch.view_as_real(torch.fft.ifftn(torch.view_as_complex(output), dim=[2,3])) * output.size(-2) ** 2  # [batch, beta, alpha, gamma, complex]
    # output = torch.view_as_real((torch.fft.ifft(output, 2) * output.size(-2) ** 2)[...,0])  # [batch, beta, alpha, gamma, complex]  


    return output

def so3_fft(x, for_grad=False, b_out=None):
    '''
    :param x: [..., beta, alpha, gamma, complex]
    :return: [l * m * n, ..., complex]
    '''
    assert x.size(-1) == 2, x.size()
    b_in = x.size(-2) // 2
    assert x.size(-2) == 2 * b_in
    assert x.size(-3) == 2 * b_in
    assert x.size(-4) == 2 * b_in
    if b_out is None:
        b_out = b_in
    batch_size = x.size()[:-4]
    # x = x.view(-1, 2 * b_in, 2 * b_in, 2 * b_in, 2)  # [batch, beta, alpha, gamma, complex]
    
    '''
    :param x: [batch, beta, alpha, gamma, complex] (nbatch, 2 b_in, 2 b_in, 2 b_in, 2)
    :return: [l * m * n, batch, complex] (b_out (4 b_out**2 - 1) // 3, nbatch, 2)
    '''
    nspec = b_out * (4 * b_out ** 2 - 1) // 3
    nbatch = x.size(0)

    wigner = _setup_wigner(b_in, nl=b_out, weighted=not for_grad, device=x.device)  # [beta, l * m * n]

    # x = torch.fft(x, 2)  # [batch, beta, m, n, complex]
    x = torch.view_as_real(torch.fft.fftn(torch.view_as_complex(x),dim=[2,3]))

    output = x.new_empty((nspec, nbatch, 2))
    cuda_kernel = _setup_so3fft_cuda_kernel(b_in=b_in, b_out=b_out, nbatch=nbatch, real_input=False, device=x.device.index)
    cuda_kernel(x, wigner, output)  # [l * m * n, batch, complex]
 
    output = output.view(-1, *batch_size, 2)  # [l * m * n, ..., complex]
    return output

class SO3_ifft_real(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, b_out=None):  # pylint: disable=W
        nspec = x.size(0)
        ctx.b_out = b_out
        ctx.b_in = round((3 / 4 * nspec) ** (1 / 3))
        return so3_ifft(x, b_out=ctx.b_out)

    @staticmethod
    def backward(ctx, grad_output):  # pylint: disable=W
        output = so3_fft(grad_output, for_grad=True, b_out=ctx.b_in).unsqueeze(-2)
        
        return output, None

@mariogeiger
Copy link
Collaborator

Very nice! This will help some people. Yes please make a PR! I will revert the last merge such that I will be able to compare the original code with your in the PR

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants