This repository has been archived by the owner on May 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathkafka_burrow_reporter.py
145 lines (111 loc) · 4.82 KB
/
kafka_burrow_reporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import print_function
import argparse
import httplib
import json
import re
# VERSION 0.1
# FROM https://github.com/jongho/kafka-burrow-telegraf-reporter
# This code was written with inspiration from kafka_jolokia_reporter.py (https://github.com/paksu/kafka-jolokia-telegraf-collector)
def get_http_response(conn, path):
conn.request("GET", path)
response = conn.getresponse()
assert response.status == 200
return response.read()
def get_clusters_from_burrow(conn):
path="/v2/kafka"
#print(path)
response = json.loads(get_http_response(conn, path))
if 'clusters' not in response:
return []
return response['clusters']
def get_consumers_from_burrow(conn, cluster):
path="/v2/kafka/{}/consumer".format(cluster)
#print(path)
response = json.loads(get_http_response(conn, path))
if 'consumers' not in response:
return []
return response['consumers']
def get_consumer_lag_status_from_burrow(conn, cluster, consumer):
path="/v2/kafka/{}/consumer/{}/lag".format(cluster, consumer)
#print(path)
response = json.loads(get_http_response(conn, path))
if 'status' not in response:
return {}
return response['status']
def fetch_consumer_lags_from_burrow(host, port):
conn = httplib.HTTPConnection(host, port)
consumer_lags = []
for cluster in get_clusters_from_burrow(conn):
for consumer in get_consumers_from_burrow(conn, cluster):
consumer_lags.append(get_consumer_lag_status_from_burrow(conn, cluster, consumer))
conn.close()
return consumer_lags
def get_formated_str(dictionary, keys, prefix=''):
return ','.join(['{}{}={}'.format(prefix, k, dictionary[k]) for k in keys])
def translate_lag_data(lag_data):
"""
Parses a Kafka Consumer Lag data from burrow and converts it to set of InfluxDB Line protocol
Currently supports at least Kafka 0.10.2 and Burrow (https://github.com/linkedin/Burrow 2017-03-07 commit)
https://github.com/linkedin/Burrow
https://docs.influxdata.com/influxdb/v1.2/write_protocols/line_protocol_reference/
EXAMPLE:
- FROM:
{
"cluster": "test",
"complete": true,
"group": "TestGroup",
"maxlag": null,
"partition_count": 1,
"partitions": [
{
"end": {
"lag": 0,
"max_offset": 14132620,
"offset": 14132620,
"timestamp": 1491449760344
},
"partition": 0,
"start": {
"lag": 0,
"max_offset": 14132620,
"offset": 14132620,
"timestamp": 1491449751328
},
"status": "OK",
"topic": "Common-Test"
},
...
],
"status": "OK",
"totallag": 0
}
- TO:
kafka.consumer.lag,cluster=test,group=TestGroup complete=True,totallag=0,partition_count=1
kafka.consumer.tp.lag,cluster=test,group=TestGroup,topic=Common-Test,partition=0 start.lag=0,start.max_offset=14132620,start.offset=14132620,start.timestamp=1491449751328,end.lag=0,end.max_offset=14132620,end.offset=14132620,end.timestamp=1491449751328
...
"""
metrics = []
# kafka.consumer.lag
lag_measurement = 'kafka.consumer.lag'
lag_tags = get_formated_str(lag_data, ['cluster', 'group'])
lag_fields = get_formated_str(lag_data, ['complete', 'totallag', 'partition_count'])
#print("lag_tags: {}".format(lag_tags))
#print("lag_fields: {}".format(lag_fields))
metrics.append("{},{} {}".format(lag_measurement, lag_tags, lag_fields))
# kafka.consumer.tp.lag
tp_lag_measurement = 'kafka.consumer.tp.lag'
for tp_lag_data in lag_data['partitions']:
#print("tp_lag_data: {}".format(tp_lag_data))
tg_lag_tags = lag_tags + ',' + get_formated_str(tp_lag_data, ['topic', 'partition'])
tg_lag_fields = get_formated_str(tp_lag_data['start'], ['lag', 'max_offset', 'offset', 'timestamp'], 'start.') + ',' + \
get_formated_str(tp_lag_data['end'], ['lag', 'max_offset', 'offset', 'timestamp'], 'end.')
metrics.append("{},{} {}".format(tp_lag_measurement, tg_lag_tags, tg_lag_fields))
return metrics
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Kafka Burrow Reporter')
parser.add_argument('--burrow-host', default='localhost', help='Burrow host')
parser.add_argument('--burrow-port', type=int, default=8000, help='Burrow port')
args = parser.parse_args()
for lag_data in fetch_consumer_lags_from_burrow(args.burrow_host, args.burrow_port):
for line in translate_lag_data(lag_data):
print(line)