-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeReferenceCircularWireLoop.py
executable file
·149 lines (116 loc) · 4.87 KB
/
computeReferenceCircularWireLoop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
import os
import sys
import mpmath as mp
# default number of digits of precision for calculations
# This has been adjusted to yield enough correct digits on all test points
# to fully verify the 64-bit double precision implementations.
mp.mp.dps = 200
# frequently-used constants with arbitrary precision
zero = mp.mpf("0")
one = mp.mpf("1")
two = mp.mpf("2")
three = mp.mpf("3")
four = mp.mpf("4")
half = one/two
threeHalf = three/two
pi = mp.pi
# constants used in the definition of IEEE754 double precision variables
exponentBias = mp.mpf("1023")
mantissaScale = mp.power(two, mp.mpf("52"))
def kSq(rp, zp):
return (four * rp) / \
(mp.power(zp, two) + mp.power(one + rp, two))
def kCSq(rp, zp):
return (mp.power(zp, two) + mp.power(one - rp, two)) / \
(mp.power(zp, two) + mp.power(one + rp, two))
def aPhiIntegrand(kcsq, phi):
return (mp.power(mp.sin(phi), two) - mp.power(mp.cos(phi), two)) / \
mp.sqrt(mp.power(mp.cos(phi), two) + kcsq * mp.power(mp.sin(phi), two))
def bRhoIntegrand(kcsq, phi):
return (mp.power(mp.sin(phi), two) - mp.power(mp.cos(phi), two)) / \
mp.power(mp.power(mp.cos(phi), two) + kcsq * mp.power(mp.sin(phi), two), threeHalf)
def bZIntegrand(rp_, ksq_, phi_):
return ((one - rp_) * mp.power(mp.sin(phi_), two) + (one + rp_) * mp.power(mp.cos(phi_), two)) / \
mp.power(one - ksq_ * mp.power(mp.sin(phi_), two), threeHalf)
def A_phi(rp, zp):
if rp == zero:
return zero
prefac = one / mp.sqrt(mp.power(zp, two) + mp.power(one + rp, two))
integrand = lambda phi: aPhiIntegrand(kCSq(rp, zp), phi)
return prefac * mp.quad(integrand, [zero, pi/two])
def B_rho(rp, zp):
if rp == zero or zp == zero:
return zero
prefac = zp / mp.power(mp.power(zp, two) + mp.power(one + rp, two), threeHalf)
integrand = lambda phi: bRhoIntegrand(kCSq(rp, zp), phi)
return prefac * mp.quad(integrand, [zero, pi/two])
def B_z(rp_, zp_):
if rp_ == zero:
return pi / (two * mp.power(mp.power(zp_, two) + one, threeHalf))
prefac_ = one / mp.power(mp.power(zp_, two) + mp.power(one + rp_, two), threeHalf)
if zp_ == zero:
ksq_ = four / (one/rp_ + two + rp_)
else:
ksq_ = kSq(rp_, zp_)
integrand_ = lambda phi_: bZIntegrand(rp_, ksq_, phi_)
return prefac_ * mp.quad(integrand_, [zero, pi/two])
def ieee754_to_arb(s, E, M):
# capture exact zero
if E == 0 and M == 0:
return zero
# parse sign bit
# 0 means positive, 1 means negative, as in (-1)^s
sign = None
if s == 0:
sign = one
else:
sign = -one
# compute exact representation of double precision variable
return sign * mp.power(two, E - exponentBias) * (one + M / mantissaScale)
if __name__ == "__main__":
testPointsFile = "../resources/testPointsCircularWireLoop.dat"
outFilenameAPhi = "../resources/CircularWireLoop_A_phi_ref.dat"
outFilenameBRho = "../resources/CircularWireLoop_B_rho_ref.dat"
outFilenameBZ = "../resources/CircularWireLoop_B_z_ref.dat"
with open(testPointsFile, "r") as f:
lines = f.readlines()
# clear previous contents of output files
with open(outFilenameAPhi, "w") as outFile:
outFile.write("")
with open(outFilenameBRho, "w") as outFile:
outFile.write("")
with open(outFilenameBZ, "w") as outFile:
outFile.write("")
numLines = len(lines)
for i, line in enumerate(lines):
# skip comment lines
if line[0] == "#":
continue
print("line %d / %d"%(i+1, numLines))
parts = line.strip().split()
# construct rp from sign, exponent and mantissa
signRp = int(parts[0].strip())
exponentRp = int(parts[1].strip())
mantissaRp = int(parts[2].strip())
rp = ieee754_to_arb(signRp, exponentRp, mantissaRp)
# construct zp from sign, exponent and mantissa
signZp = int(parts[3].strip())
exponentZp = int(parts[4].strip())
mantissaZp = int(parts[5].strip())
zp = ieee754_to_arb(signZp, exponentZp, mantissaZp)
# compute magnetostatic quantities: A_phi, B_rho and B_z
aPhi = A_phi(rp, zp)
bRho = B_rho(rp, zp)
bZ = B_z(rp, zp)
with mp.workdps(20):
with open(outFilenameAPhi, "a") as outFile:
outFile.write(str(aPhi) + "\n")
outFile.flush()
with open(outFilenameBRho, "a") as outFile:
outFile.write(str(bRho) + "\n")
outFile.flush()
with open(outFilenameBZ, "a") as outFile:
outFile.write(str(bZ) + "\n")
outFile.flush()
sys.exit(0)