-
Notifications
You must be signed in to change notification settings - Fork 0
/
algorithm_buchberger_explorer_postcustomreduce.cpp
817 lines (802 loc) · 29.5 KB
/
algorithm_buchberger_explorer_postcustomreduce.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
#ifndef __ALGORITHM_BUCHBERGER_EXPLORER_CPP_
#define __ALGORITHM_BUCHBERGER_EXPLORER_CPP_
#include <vector>
using std::vector;
#include "hilbert_functions.hpp"
#include "algorithm_buchberger_basic.hpp"
#include "reduction_support.hpp"
#include "algorithm_buchberger_explorer.hpp"
#include "mpi.h"
#define XPLOR_GENERATOR -1
#define PROC_UNASSIGNED -1
/**
@ingroup GBComputation
@brief contains information on critical pairs by their index in the basis,
in addition to the usual information
*/
class Critical_Pair_XPlor : public Critical_Pair_Basic {
public:
/** @name Construction */
///@{
/** @brief create critical pair (f,0) where f is at index @c i */
Critical_Pair_XPlor(int i, unsigned strategy, Abstract_Polynomial * f)
: Critical_Pair_Basic(f, strategy)
{
pi = i; qi = XPLOR_GENERATOR; proc = PROC_UNASSIGNED;
}
/** @brief create critical pair (f,g) where f, g are at indices @c i, @c j */
Critical_Pair_XPlor(
int i, int j, unsigned strategy, vector<Abstract_Polynomial *>G
)
: Critical_Pair_Basic(G[i], G[j], strategy)
{
pi = i; qi = j; proc = PROC_UNASSIGNED;
}
/** @brief create critical pair (f,g) where f is at index @c i */
Critical_Pair_XPlor(
int i, Abstract_Polynomial *g, unsigned strategy,
vector<Abstract_Polynomial *>G
)
: Critical_Pair_Basic(G[i], g, strategy)
{
pi = i; qi = G.size(); proc = PROC_UNASSIGNED;
}
///@}
/** @name Basic properties */
///@{
/** @brief returns index of first polynomial in pair */
int first_index() { return pi; }
/** @brief returns index of second polynomial in pair */
int second_index() { return qi; }
/** @brief returns sugar of this pair; use ONLY if with sugar strategy */
DEG_TYPE sugar() {
return (static_cast<Pair_Sugar_Data *>(key))->pair_sugar();
}
///@}
/** @name Multiprocessing data */
///@{
/** @brief record that this pair is assigned to processor @c i */
void set_processor(int i) { proc = i; }
/**
@brief query whether this pair is assigned to a processor, and which
(nonnegative value indicates assignment, and to which)
*/
int get_processor() { return proc; }
///@}
protected:
/** @brief first polynomial in the critical pair */
int pi;
/** @brief second polynomial in the critical pair */
int qi;
/** @brief processor to which this pair has been assigned */
int proc;
};
/**
@brief compares the Hilbert functions, as specified by Hilbert polynomial and
series
@return @c true iff the second Hilbert function is measurably better than
the first.
*/
bool second_HF_smaller(
Dense_Univariate_Rational_Polynomial * hp1,
Dense_Univariate_Integer_Polynomial * hn1,
Dense_Univariate_Rational_Polynomial * hp2,
Dense_Univariate_Integer_Polynomial * hn2
) {
// this adapts LessByHilbert in dynamic_engine.cpp
// in this case, we want the opposite result,
// so the return statement at the end is negated
bool result;
// first check the coefficients of the Hilbert polynomial
Dense_Univariate_Rational_Polynomial HPdiff(*hp1);
HPdiff -= *hp2;
if (not HPdiff.is_zero())
result = (HPdiff.numerator(HPdiff.degree()) < 0);
else // use Hilbert series
{
Dense_Univariate_Integer_Polynomial * h1 = hn1;
Dense_Univariate_Integer_Polynomial * h2 = hn2;
DEG_TYPE i = 0;
for ( /* already initialized */ ;
i <= h1->degree() and i <= h2->degree() and (*h1)[i] == (*h2)[i];
i++)
{ /* taken care of in loop */ }
if (i > h1->degree())
{
if (i > h2->degree())
// the numerators are equal; second is not measurably better
result = false;
else
result = true;
}
else
{
if (i > h2->degree()) result = false;
else result = (*h1)[i] < (*h2)[i];
}
}
//cout << "\tfirst less than second? " << result << endl;
return not result;
}
/**
@brief compares the Hilbert function at position @c i (“older”)
with the Hilbert function at position @c j (“newer”).
Returns @c true iff j’s Hilbert function is measurably better than
i’s.
*/
bool newer_HF_smaller(Monomial & t, unsigned i, Monomial & u, unsigned j,
Dense_Univariate_Rational_Polynomial ** HP,
Dense_Univariate_Integer_Polynomial ** HFN
) {
// this adapts LessByHilbert in dynamic_engine.cpp
// in this case, we want the opposite result,
// so the return statement at the end is negated
bool result;
NVAR_TYPE n = t.num_vars();
// first check the coefficients of the Hilbert polynomial
Dense_Univariate_Rational_Polynomial HPdiff(*(HP[i]));
HPdiff -= *(HP[j]);
if (not HPdiff.is_zero())
result = (HPdiff.numerator(HPdiff.degree()) < 0);
else // use Hilbert series
{
Dense_Univariate_Integer_Polynomial * h1 = HFN[i];
Dense_Univariate_Integer_Polynomial * h2 = HFN[j];
DEG_TYPE i = 0;
for ( /* already initialized */ ;
i <= h1->degree() and i <= h2->degree() and (*h1)[i] == (*h2)[i];
i++)
{ /* taken care of in loop */ }
if (i > h1->degree())
{
if (i > h2->degree())
{ // the numerators are equal; break tie via lex
int i = 0;
while (i < n and t[i] == u[i]) ++i;
if (i == n) result = false;
else result = (t.degree(i) > u.degree(i));
}
else
result = true;
}
else
{
if (i > h2->degree()) result = false;
else result = (*h1)[i] < (*h2)[i];
}
}
//cout << "\tfirst less than second? " << result << endl;
return not result;
}
/**
@brief usable by @c MPI_Allreduce() to determine a minimal Hilbert function
@details The first entry in the arrays needs to identify the processor.
If its value is -1, the source had no useful information, so we can
disregard its values.
The second entry (i.e., position 1) records the length of the Hilbert
polynomial, say n.
Starting at position 2, we should have (left-to-right) the coefficients of
that processor's Hilbert polynomial, as pairs (numerator, followed by
denominator), from largest to degree to smallest.
From position n+2, we should have
the coefficients of that processor's Hilbert numberator, from smallest
degree to largest. These orderings should help with efficiency.
*/
void hilbert_chooser(
void * firstin, void * secondin, int * len, MPI_Datatype * dptr
) {
int64_t * first = (int64_t *)firstin;
int64_t * second = (int64_t *)secondin;
bool undecided = true;
bool keep_second = true;
if (first[0] == -1 or second[0] == -1) {
undecided = false;
if (first[0] != -1)
keep_second = false;
}
if (undecided) {
int64_t i;
int64_t n = first[1];
for (i = 0; undecided and i <= n; ++i)
undecided = (first[2*i + 2]*second[2*i+3] == second[2*i + 2]*first[2*i+3]);
if (not undecided) {
--i;
keep_second = (first[2*i + 2]*second[2*i+3] >= second[2*i + 2]*first[2*i+3]);
}
else {
for (i = 2*(n + 1) + 2; undecided and i < *len; ++i)
undecided = (first[i] == second[i]);
keep_second = undecided or first[--i] < second[i];
}
}
// at this point, if we're still undecided then the functions are equal
if (not keep_second)
for (unsigned i = 0; i < *len; ++i)
second[i] = first[i];
}
/**
@brief Implementation of Gebauer-Moeller algorithm, with XPLOR critical pairs.
Based on description in Becker and Weispfenning (1993).
@ingroup GBComputation
@param P list of critical pairs that are not assigned
@param Pass list of critical pairs that are assigned
@param Pcancel array of critical pairs that are discovered to be redundant
@param G current basis
@param r polynomial to add to basis (and to generate new pairs)
@param strategy how to sort pairs
*/
void gm_update_explorer(
list<Critical_Pair_XPlor *> & P,
list<Critical_Pair_XPlor *> & Pass,
list<Critical_Pair_XPlor *> * Pcancel,
vector<Abstract_Polynomial *> & G,
Abstract_Polynomial * r,
unsigned strategy
) {
//cout << "----------------------\n";
list<Critical_Pair_XPlor *> C;
//cout << "creating and pruning pairs, starting with:\n";
//cout << '\t' << P.size() << " pairs\n";
//cout << '\t' << G.size() << " polynomials\n";
// critical pairs with new polynomial
unsigned m = G.size();
for (unsigned i = 0; i < G.size(); ++i)
C.push_back(new Critical_Pair_XPlor(i, r, strategy, G));
//cout << "Created " << C.size() << " pairs with new polynomial\n";
// apply Buchberger's lcm criterion to new pairs
list<Critical_Pair_XPlor *> D;
while (C.size() != 0) {
Critical_Pair_XPlor * p = C.front();
C.pop_front();
if ((p->first()->leading_monomial().is_coprime(
p->second()->leading_monomial()))
or (no_triplet(p, C) and no_triplet(p, D))
)
D.push_back(p);
else {
//cout << "triplet prunes " << *p << endl;
delete p;
}
}
//cout << "After applying Buchberger's lcm criterion to new pairs, now have "
// << D.size() << " new pairs\n";
// apply Buchberger's gcd criterion
list<Critical_Pair_XPlor *> E;
while (D.size() != 0) {
Critical_Pair_XPlor * p = D.front();
D.pop_front();
if (!(p->first()->leading_monomial().is_coprime(
p->second()->leading_monomial())))
E.push_back(p);
else {
//cout << "gcd prunes " << *p << endl;
delete p;
}
}
//cout << "After applying Buchberger's gcd criterion to new pairs, now have "
// << E.size() << " new pairs\n";
// apply Buchberger's lcm criterion to old pairs
list<Critical_Pair_XPlor *> Q;
while (P.size() != 0) {
Critical_Pair_XPlor * p = P.front();
P.pop_front();
if (!(r->leading_monomial() | p->lcm())
or lcm_alike(p->first()->leading_monomial(), r->leading_monomial(), p)
or lcm_alike(p->second()->leading_monomial(), r->leading_monomial(), p)
)
Q.push_back(p);
else {
//cout << "triplet prunes " << *p << endl;
delete p;
}
}
//cout << "After applying Buchberger's lcm criterion to new pairs, now have "
// << Q.size() << " old pairs\n";
P = Q;
list <Critical_Pair_XPlor *> R;
while (Pass.size() != 0) {
Critical_Pair_XPlor * p = Pass.front();
Pass.pop_front();
if (!(r->leading_monomial() | p->lcm())
or lcm_alike(p->first()->leading_monomial(), r->leading_monomial(), p)
or lcm_alike(p->second()->leading_monomial(), r->leading_monomial(), p)
)
R.push_back(p);
else {
//cout << "\ttriplet prunes " << *p << endl;
Pcancel[p->get_processor()].push_back(p);
}
}
Pass = R;
// add new pairs to old pairs
for (Critical_Pair_XPlor * e : E)
P.push_back(e);
for (unsigned i = 0; i < 2; ++i) {
if (Pcancel[i].size() > 0) {
cout << "Should delete pairs ";
for (Critical_Pair_XPlor * p : Pcancel[i])
cout << '(' << p->first_index() << ',' << p->second_index() << " (" << i << ") ) ";
cout << endl;
}
}
/*cout << "All pairs:\n";
for (list<Critical_Pair_XPlor *>::iterator pi = P.begin(); pi != P.end(); ++pi)
cout << '\t' << **pi << endl;
cout << "----------------------\n";*/
}
typedef Critical_Pair_XPlor * Critical_Pair_XPlor_Ptr;
/**
@brief used to pass inforation on a critical pair from one polynomial to another
*/
typedef struct {
/** @brief index of first polynomial in the pair */
int first;
/** @brief index of second polynomial in the pair */
int second;
/** @brief pair’s sugar */
DEG_TYPE sugar;
} Critical_Pair_Communication;
list<Constant_Polynomial *> buchberger_explorer(
const vector<Abstract_Polynomial *> &F,
int method,
unsigned strategy,
WT_TYPE * strategy_weights,
const int comm_id,
const int comm_size
) {
double r_bcast_time = 0;
unsigned number_of_spolys = 0;
vector<Abstract_Polynomial *> G; // basis
list<Critical_Pair_XPlor *> P; // critical pairs
list<Critical_Pair_XPlor *> Pass, * Pdel; // critical pair assignments
list<Critical_Pair_XPlor *> R; // reduced polynomials
list<Constant_Polynomial *> B; // end result
Polynomial_Ring & Rx = (*(F.begin()))->base_ring();
Monomial_Ordering * mord = (*(F.begin()))->monomial_ordering();
// set up MPI_Datatype
MPI_Datatype pair_type, pair_basetypes[2];
MPI_Aint pair_offsets[2], extent, lb;
int pair_block_counts[2];
pair_offsets[0] = 0; pair_basetypes[0] = MPI_INT; pair_block_counts[0] = 2;
MPI_Type_get_extent(MPI_INT, &lb, &extent);
pair_offsets[1] = 2 * extent; pair_basetypes[1] = MPI_UNSIGNED_LONG_LONG;
pair_block_counts[1] = 1;
MPI_Type_create_struct(2, pair_block_counts, pair_offsets, pair_basetypes, &pair_type);
MPI_Type_commit(&pair_type);
// set up MPI_Op
MPI_Op hilbert_comparison_op;
MPI_Op_create(hilbert_chooser, false, &hilbert_comparison_op);
// set up basis with generators
vector<Abstract_Polynomial *>::const_iterator Fi = F.begin();
NVAR_TYPE n = (*Fi)->number_of_variables();
for (unsigned i = 0; i < F.size(); ++i, ++Fi)
{
Abstract_Polynomial * fo = *Fi;
Constant_Polynomial * f = new Constant_Polynomial(*fo);
f->set_strategy(new Poly_Sugar_Data(f));
if (f->strategy() != nullptr) { f->strategy()->at_generation_tasks(); }
if (comm_id == 0) // only control needs to take care of critical pairs
P.push_back(new Critical_Pair_XPlor(i, strategy, f));
}
// main loop
bool verbose = false;
bool very_verbose = false;
unsigned min_todo = 0;
if (comm_id == 0) {
Pdel = new list<Critical_Pair_XPlor *>[comm_size];
Dense_Univariate_Rational_Polynomial ** HP
= new Dense_Univariate_Rational_Polynomial *[comm_size];
Dense_Univariate_Integer_Polynomial ** HFN
= new Dense_Univariate_Integer_Polynomial *[comm_size];
Dense_Univariate_Integer_Polynomial ** HSN
= new Dense_Univariate_Integer_Polynomial *[comm_size];
min_todo = P.size();
}
MPI_Bcast(&min_todo, 1, MPI_UNSIGNED, 0, MPI_COMM_WORLD);
list<Monomial> T;
Mutable_Polynomial * s;
// create, reduce s-polynomials
Critical_Pair_Communication p_in;
while (min_todo != 0) {
/*for (int i = 0; i < comm_size; ++i) {
if (comm_id == i) {
cout << comm_id << "'s pairs\n";
for (Critical_Pair_XPlor * p : R)
cout << '\t' << comm_id << ' ' << *p << endl;
}
MPI_Barrier(MPI_COMM_WORLD);
}*/
//double start_time = MPI_Wtime();
if (comm_id == 0) {
if (P.size() > 0)
sort_pairs_by_strategy(P);
cout << "estimate " << min_todo << " steps left\n";
// first select comm_id pairs for reduction, send to coprocessors, reduce
int i = 1;
Critical_Pair_Communication p_new;
for (/* already initialized */; !P.empty() and i < comm_size; ++i) {
Critical_Pair_XPlor * p = P.front();
p_new.first = p->first_index(); p_new.second = p->second_index();
p_new.sugar = p->sugar();
//report_front_pair(p, strategy);
P.pop_front();
p->set_processor(i);
Pass.push_back(p);
cout << comm_id << " sending "
<< p_new.first << ',' << p_new.second << ':' << p_new.sugar
<< " to " << i << endl;
MPI_Send(&p_new, 1, pair_type, i, 0, MPI_COMM_WORLD);
}
for (/* already initialized */; P.empty() and i < comm_size; ++i) {
p_new.first = p_new.second = XPLOR_GENERATOR; p_new.sugar = 0;
cout << comm_id << " sending "
<< p_new.first << ',' << p_new.second << ':' << p_new.sugar
<< " to " << i << endl;
MPI_Send(&p_new, 1, pair_type, i, 0, MPI_COMM_WORLD);
}
if (!P.empty()) {
Critical_Pair_XPlor * p = P.front();
P.pop_front();
//report_front_pair(p, strategy);
p_in.first = p->first_index(); p_in.second = p->second_index();
p_in.sugar = p->sugar();
p->set_processor(comm_id);
Pass.push_back(p);
cout << comm_id << " sending "
<< p_in.first << ',' << p_in.second << ':' << p_in.sugar
<< " to " << comm_id << endl;
} else {
p_in.first = p_in.second = XPLOR_GENERATOR;
}
}
//MPI_Barrier(MPI_COMM_WORLD);
if (comm_id != 0)
MPI_Recv(&p_in, 1, pair_type, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
if (p_in.first != XPLOR_GENERATOR) {
if (p_in.second == XPLOR_GENERATOR)
//R.push_back(new Critical_Pair_XPlor(p_in.first, p_in.second, p_in.sugar, F));
R.push_back(new Critical_Pair_XPlor(p_in.first, SUGAR_STRATEGY, F[p_in.first]));
else
R.push_back(new Critical_Pair_XPlor(p_in.first, p_in.second, SUGAR_STRATEGY, G));
}
/*for (unsigned i = 0; i < comm_size; ++i) {
if (comm_id == i) {
for (list<Critical_Pair_XPlor *>::iterator Ri = R.begin(); Ri != R.end(); ++Ri) {
cout << comm_id << " has " << (*Ri)->first_index() << ',' << (*Ri)->second_index() << " : " << (*Ri)->sugar() << endl;
}
}
MPI_Barrier(MPI_COMM_WORLD);
}
if (comm_id == 0) cout << "----\n";*/
//r_bcast_time += MPI_Wtime() - start_time;
//MPI_Barrier(MPI_COMM_WORLD);
//double start_time = MPI_Wtime();
for (Critical_Pair_XPlor * p : R) {
// make s-poly
if ((s = p->s_polynomial()) == nullptr) {
s = p->s_polynomial(method, strategy);
++number_of_spolys;
}
//cout << comm_id << " reducing s-poly "
// << p->first_index() << ',' << p->second_index() << endl;
//double start_time = MPI_Wtime();
if (!s->is_zero())
reduce_over_basis<vector<Abstract_Polynomial *>>(&s, G, comm_id);
//r_bcast_time += MPI_Wtime() - start_time;
p->set_spoly(s);
}
//r_bcast_time += MPI_Wtime() - start_time;
/*for (int i = 0; i < comm_size; ++i) {
if (comm_id == i)
cout << comm_id << " finished reduction with " << R.size() << " polynomials\n";
MPI_Barrier(MPI_COMM_WORLD);
}*/
// create, compare Hilbert functions
//MPI_Barrier(MPI_COMM_WORLD);
//double start_time = MPI_Wtime();
unsigned winning_index = R.size() + 1;
Monomial * wt = nullptr;
Dense_Univariate_Rational_Polynomial * wHP = nullptr;
Dense_Univariate_Integer_Polynomial * wHS = nullptr;
Dense_Univariate_Integer_Polynomial * hn = nullptr;
Dense_Univariate_Integer_Polynomial * hsn = nullptr;
Dense_Univariate_Rational_Polynomial * hp = nullptr;
// loop through critical pairs to find optimal HF
list<Critical_Pair_XPlor *>::iterator Rbest = R.end();
//double start_time = MPI_Wtime();
for (
list<Critical_Pair_XPlor *>::iterator Ri = R.begin();
Ri != R.end();
/* advance manually */
) {
s = (*Ri)->s_polynomial();
if (s->is_zero()) {
cout << '\t' << comm_id << ' ' << (*Ri)->first_index() << ','
<< (*Ri)->second_index() << ": reduced to zero\n";
Critical_Pair_XPlor * p = *Ri;
if (Ri == R.begin()) {
R.pop_front();
Ri = R.begin();
} else {
list<Critical_Pair_XPlor *>::iterator Rdel = Ri;
++Ri;
R.erase(Rdel);
}
delete p;
} else {
T.push_back(s->leading_monomial());
unsigned n = T.front().num_vars();
hn = hilbert_numerator_bigatti(T);
hsn = hilbert_second_numerator(n, hn);
unsigned d = ideal_dimension(n, hn, hsn);
hp = hilbert_polynomial(n, d, T, hn, hsn);
T.pop_back();
if (wt == nullptr) {
wt = &(s->leading_monomial()); wHP = hp; wHS = hn; Rbest = Ri;
} else {
if (second_HF_smaller(wHP, wHS, hp, hn)) {
wt = &(s->leading_monomial()); wHP = hp; wHS = hn; Rbest = Ri;
} else {
//delete hp;
//delete hn;
}
}
++Ri;
}
}
//r_bcast_time = MPI_Wtime() - start_time;
//MPI_Barrier(MPI_COMM_WORLD);
// move result of winning reduction to basis; return others to P
//cout << comm_id << " about to send Hilbert data\n";
/*for (int i = 0; i < comm_size; ++i) {
if (comm_id == i) {
if (wt == nullptr) {
cout << comm_id << " has no Hilbert data\n";
} else {
cout << comm_id << "'s Hilbert data for " << *wt << ":\n";
cout << '\t' << *wHP << endl;
cout << '\t' << *wHS << endl;
}
}
MPI_Barrier(MPI_COMM_WORLD);
}*/
//MPI_Barrier(MPI_COMM_WORLD);
//double start_time = MPI_Wtime();
int winners_id = -1;
// we use -1 if there is no useful Hilbert function; i.e., all R's polys -> 0
int hp_deg = (wt == nullptr) ? -1 : hp->degree();
int recv_hp_deg;
MPI_Allreduce(&hp_deg, &recv_hp_deg, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
// it's possible all the polynomials reduced to zero, so...
if (recv_hp_deg != -1) {
int hn_deg = (wHP == nullptr) ? -1 : wHS->degree();
int recv_hn_deg;
MPI_Allreduce(&hn_deg, &recv_hn_deg, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
int xfer_size = 2*(recv_hp_deg +1) + (recv_hn_deg + 1) + 2;
int64_t * send_data = new int64_t[xfer_size];
if (wt == nullptr)
send_data[0] = -1;
else {
send_data[0] = comm_id; send_data[1] = recv_hp_deg;
DEG_TYPE hi = 0;
for ( /* already initialized */ ; hi < recv_hp_deg - wHP->degree(); ++hi)
send_data[2*hi + 2] = send_data[2*hi + 3] = 0;
for ( /* already initialized */ ; hi <= recv_hp_deg; ++hi) {
send_data[2*hi + 2] = wHP->numerator(recv_hp_deg - hi);
send_data[2*hi + 3] = wHP->denominator(recv_hp_deg - hi);
}
for (hi = 0; hi <= wHS->degree(); ++hi)
send_data[2 + 2*(recv_hp_deg + 1) + hi] = wHS->coeff(hi);
for (
hi = 2 + 2*(recv_hp_deg + 1) + wHS->degree() + 1;
hi < xfer_size;
++hi
) {
send_data[hi] = 0;
}
}
int64_t * recv_data = new int64_t[xfer_size];
MPI_Allreduce(
send_data, recv_data, xfer_size, MPI_INT64_T, hilbert_comparison_op,
MPI_COMM_WORLD
);
winners_id = recv_data[0];
delete [] send_data; delete [] recv_data;
}
//delete wHP; delete wHS;
//r_bcast_time += MPI_Wtime() - start_time;
//if (comm_id == 0) cout << "chose winner " << winners_id << endl;
//double start_time = MPI_Wtime();
if (winners_id >= 0) {
uint64_t * r_bcast;
uint64_t r_bcast_size;
uint64_t r_bcast_sugar;
Constant_Polynomial * r;
if (comm_id == winners_id) {
// notify proc 0
int pair_data[2];
pair_data[0] = (*Rbest)->first_index();
pair_data[1] = (*Rbest)->second_index();
MPI_Send(pair_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);
// broadcast winning polynomial
s = (*Rbest)->s_polynomial();
r = new Constant_Polynomial(*s);
cout << "selected " << (*Rbest)->first_index()
<< ',' << (*Rbest)->second_index() << ": " << r->leading_monomial()
<< endl;
Poly_Sugar_Data * sd = static_cast<Poly_Sugar_Data *>(s->strategy());
r->set_strategy(sd);
r_bcast_sugar = sd->poly_sugar();
s->set_strategy(nullptr);
delete s;
Critical_Pair_XPlor * p = *Rbest;
R.erase(Rbest);
delete p;
r_bcast = r->serialized(r_bcast_size);
}
if (comm_id == 0) {
int pair_data[2];
MPI_Recv(pair_data, 2, MPI_INT, winners_id, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
bool found = false;
list<Critical_Pair_XPlor *>::iterator Ri;
for (Ri = Pass.begin(); not found and Ri != Pass.end(); /* manual */) {
if ((*Ri)->first_index() == pair_data[0] and (*Ri)->second_index() == pair_data[1])
found = true;
else
++Ri;
}
if (found) {
cout << "0 deleting " << pair_data[0] << ',' << pair_data[1] << endl;
delete *Ri;
Pass.erase(Ri);
}
}
//MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(&r_bcast_size, 1, MPI_UINT64_T, winners_id, MPI_COMM_WORLD);
if (comm_id != winners_id)
r_bcast = new uint64_t [r_bcast_size];
//double start_time = MPI_Wtime();
MPI_Bcast(r_bcast, r_bcast_size, MPI_UINT64_T, winners_id, MPI_COMM_WORLD);
//r_bcast_time += MPI_Wtime() - start_time;
MPI_Bcast(&r_bcast_sugar, 1, MPI_UINT64_T, winners_id, MPI_COMM_WORLD);
// other processors need to create a copy of the new polynomial
if (comm_id != winners_id) {
r_bcast_size /= n + 1; // adjust size from # of words to # of terms
r = new Constant_Polynomial(Rx, mord, r_bcast_size, r_bcast);
Poly_Sugar_Data * rd = new Poly_Sugar_Data(r);
rd->force_sugar(r_bcast_sugar);
r->set_strategy(rd);
}
//if (comm_id == 0) cout << "selected " << r->leading_monomial() << endl;
//MPI_Barrier(MPI_COMM_WORLD);
//r_bcast_time += MPI_Wtime() - start_time;
delete [] r_bcast;
double start_time = MPI_Wtime();
if (comm_id == 0) {
//cout << "added " << G.size() << ": " << r->leading_monomial() << endl;
very_verbose = false;
if (very_verbose) { cout << "\tin full "; r->println(); }
very_verbose = false;
gm_update_explorer(P, Pass, Pdel, G, r, strategy);
// remove useless pairs that were sent out to processors
for (int i = 1; i < comm_size; ++i) {
int outgoing = Pdel[i].size();
MPI_Send(&outgoing, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
while (Pdel[i].size() > 0) {
Critical_Pair_XPlor * p = Pdel[i].front();
Critical_Pair_Communication p_new;
Pdel[i].pop_front();
p_new.first = p->first_index();
p_new.second = p->second_index();
MPI_Send(&p_new, 1, pair_type, i, 0, MPI_COMM_WORLD);
delete p;
}
}
// now delete my own redundant pairs
while (Pdel[0].size() > 0) {
Critical_Pair_XPlor * p = Pdel[0].front();
Pdel[0].pop_front();
list<Critical_Pair_XPlor *>::iterator Ri = R.begin();
while (
Ri != R.end() and
((*Ri)->first_index() != p->first_index() or
(*Ri)->second_index() != p->second_index())
)
++Ri;
// if the polynomial reduced to zero, it will not be in R
if (Ri != R.end()) {
cout << comm_id << " deleting " << '(' << p->first_index() << ',' << p->second_index() << ')' << endl;
R.erase(Ri);
}
delete p;
}
} else {
int incoming;
MPI_Recv(&incoming, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
for (int j = 0; j < incoming; ++j) {
MPI_Recv(&p_in, 1, pair_type, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
list<Critical_Pair_XPlor *>::iterator Ri = R.begin();
while (
Ri != R.end() and
((*Ri)->first_index() != p_in.first or
(*Ri)->second_index() != p_in.second)
)
++Ri;
// if Ri has reduced to zero, it will not be in R
if (Ri != R.end()) {
Critical_Pair_XPlor * p = *Ri;
cout << comm_id << " deleting " << '(' << p->first_index() << ',' << p->second_index() << ')' << endl;
R.erase(Ri);
delete p;
}
}
}
r_bcast_time += MPI_Wtime() - start_time;
//MPI_Barrier(MPI_COMM_WORLD);
G.push_back(r);
T.push_back(r->leading_monomial());
}
//r_bcast_time += MPI_Wtime() - start_time;
/*for (int i = 0; i < comm_size; ++i) {
if (comm_id == i) {
cout << comm_id << "'s basis\n";
for (Abstract_Polynomial * g : G)
cout << '\t' << comm_id << ' ' << *g << endl;
}
MPI_Barrier(MPI_COMM_WORLD);
}*/
//double start_time = MPI_Wtime();
if (comm_id == 0) min_todo = P.size();
unsigned my_todo = R.size();
unsigned all_todo;
MPI_Reduce(&my_todo, &all_todo, 1, MPI_UNSIGNED, MPI_MAX, 0, MPI_COMM_WORLD);
if (comm_id == 0)
min_todo = min_todo < all_todo ? all_todo : min_todo;
MPI_Bcast(&min_todo, 1, MPI_UNSIGNED, 0, MPI_COMM_WORLD);
//r_bcast_time += MPI_Wtime() - start_time;
//cout << comm_id << " understands there to be " << min_todo << " pairs remaining\n";
/*for (int i = 0; i < comm_size; ++i) {
if (comm_id == i)
for (Critical_Pair_XPlor * p : R)
cout << comm_id << "has " << p->first_index() << ',' << p->second_index() << endl;
MPI_Barrier(MPI_COMM_WORLD);
}*/
//MPI_Barrier(MPI_COMM_WORLD);
}
if (comm_id != 0) {
for (Abstract_Polynomial * g : G)
delete g;
}
MPI_Type_free(&pair_type);
cout << comm_id << " reduced " << number_of_spolys << endl;
//MPI_Barrier(MPI_COMM_WORLD);
int total_spolys;
MPI_Reduce(&number_of_spolys, &total_spolys, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
double max_bcast_time;
MPI_Reduce(&r_bcast_time, &max_bcast_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
for (unsigned i = 0; i < comm_size; ++i) {
if (comm_id == i)
cout << comm_id << " took " << r_bcast_time << " milliseconds on timed segment(s).\n";
MPI_Barrier(MPI_COMM_WORLD);
}
if (comm_id == 0) {
cout << total_spolys << " s-polynomials computed and reduced\n";
cout << max_bcast_time << " seconds spent on timed segment(s)\n";
// cleanup
cout << G.size() << " polynomials before interreduction\n";
//check_correctness(G, strategy);
list<Abstract_Polynomial *> G_final;
for (Abstract_Polynomial * g : G)
G_final.push_back(g);
G_final = reduce_basis(G_final);
cout << G_final.size() << " polynomials after interreduction\n";
//set<Constant_Polynomial *, smaller_lm> B;
for (Abstract_Polynomial * g : G_final) {
B.push_back(new Constant_Polynomial(*g));
//if (F.find(g) == F.end()) delete g;
}
delete [] Pdel;
}
return B;
}
#endif