forked from facebookresearch/seamless_communication
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml.py
553 lines (417 loc) · 15.8 KB
/
ggml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
"""
We are vendoring https://github.com/abetlen/ggml-python (MIT License)
adding a few utilities to convert between ggml and numpy tensors for testing.
"""
import contextlib
import ctypes
import dataclasses
import functools
import logging
from pathlib import Path
from typing import Any, Callable, Dict, Iterator, NamedTuple, Tuple, Type, Union
import numpy as np
import torch
import subprocess
import sys
from ctypes_utils import NULLPTR, Ptr, c_fn, c_struct
from third_party_ggml import *
### Helpers
@functools.lru_cache(4)
def numpy_dtype(ggml_type: ctypes.c_int) -> np.dtype:
if ggml_type == 0:
# GGML_TYPE_F32 = 0,
return np.dtype(np.float32)
if ggml_type == 1:
# GGML_TYPE_F16 = 1,
return np.dtype(np.float16)
if ggml_type == 18:
return np.dtype(np.int32)
raise NotImplementedError(f"Can't convert GGML_TYPE({ggml_type}) to a numpy.dtype")
@functools.lru_cache()
def from_numpy_dtype(dtype: np.dtype) -> ctypes.c_int:
def _ggml_type(name: bytes, value: int) -> ctypes.c_int:
t = ctypes.c_int(value)
type_name = ggml_type_name(t)
if name != type_name:
raise RuntimeError(
f"Type {name!r} doesn't have value {value}. ggml.h was probably updated but not ggml.py"
)
return t
if dtype == np.float32:
return _ggml_type(b"f32", 0)
elif dtype == np.float16:
return _ggml_type(b"f16", 1)
elif dtype == np.dtype("bool"):
return _ggml_type(b"i8", 16)
elif dtype == np.int32:
return _ggml_type(b"i32", 18)
raise NotImplementedError(f"Can't convert {dtype} to a GGML_TYPE")
def shape(tensor: Union[ggml_tensor, ggml_tensor_p]) -> Tuple[int, ...]:
if isinstance(tensor, ctypes._Pointer):
tensor = tensor.contents
ndims = tensor.n_dims
return tuple([tensor.ne[i] for i in range(ndims)[::-1]])
def nb(tensor: Union[ggml_tensor, ggml_tensor_p]) -> Tuple[int, ...]:
if isinstance(tensor, ctypes._Pointer):
tensor = tensor.contents
return tuple([tensor.nb[i] for i in range(4)])
def ne(tensor: Union[ggml_tensor, ggml_tensor_p]) -> Tuple[int, ...]:
if isinstance(tensor, ctypes._Pointer):
tensor = tensor.contents
return tuple([tensor.ne[i] for i in range(4)])
def strides(tensor: Union[ggml_tensor, ggml_tensor_p]) -> Tuple[int, ...]:
if isinstance(tensor, ctypes._Pointer):
tensor = tensor.contents
ndims = tensor.n_dims
num_bytes = tuple([tensor.nb[i] for i in range(ndims)])
strides = num_bytes[::-1]
return strides
def to_numpy(tensor_p: ggml_tensor_p) -> np.ndarray:
if not ggml_is_contiguous(tensor_p):
if not _almost_contiguous(tensor_p):
return _strided_to_numpy(tensor_p)
tensor = tensor_p.contents
res = _void_p_to_np_array(tensor.data, shape(tensor), numpy_dtype(tensor.type))
if ggml_is_transposed(tensor_p):
# Patch up strides to work with transposed ggml_tensor
res.strides = strides(tensor) # type: ignore[assignment]
return res
def _almost_contiguous(tensor_p: ggml_tensor_p) -> bool:
"""Distinguishes between fully strided and just transposed."""
tensor = tensor_p.contents
num_bytes = nb(tensor)
num_elem = ne(tensor)
# Sort the axis according to 'num_bytes'
nbe = sorted(zip(num_bytes, num_elem))
itemsize = ggml_type_size(tensor.type)
stride_exp = itemsize
for stride, e in nbe:
if stride != stride_exp:
return False
stride_exp *= e
return True
def _strided_to_numpy(tensor_p: ggml_tensor_p) -> np.ndarray:
if ggml_is_transposed(tensor_p):
raise NotImplementedError(
"to_numpy doesn't support tensors both transposed and strided."
)
tensor = tensor_p.contents
n_dim = tensor.n_dims
t_shape = shape(tensor)
t_strides = strides(tensor)
type_size = ggml_type_size(tensor.type)
full_shape = []
num_bytes = nb(tensor)
# Determine the full backing slice of bytes to read.
# TODO make this work for transposed array
n = 1
total_elements = 1
try:
for d in range(n_dim - 1):
n = num_bytes[d + 1] // type_size // n
full_shape.append(n)
total_elements *= n
except ZeroDivisionError:
logging.warning("Can't convert permuted GGML tensor back to numpy")
return None
# We don't need to guess for the first dimension, since this doesn't impact striding.
full_shape.append(t_shape[0])
total_elements *= t_shape[0]
full_shape = full_shape[::-1]
res = _void_p_to_np_array(tensor.data, tuple(full_shape), numpy_dtype(tensor.type))
# Extract the correct slice
res = res.__getitem__(tuple(slice(0, n) for n in t_shape))
# TODO: we could handle transposition here
return res
def _void_p_to_np_array(
data: ctypes.c_void_p, shape: Tuple[int, ...], dtype: np.dtype
) -> np.ndarray:
# Convert the ggml data pointer to a pointer of bytes
# This is needed because Python ctypes doesn't have "float16", and `as_array` only works with ctypes
int_width: type = getattr(ctypes, f"c_uint{8 * dtype.itemsize}")
ptr = ctypes.cast(data, ctypes.POINTER(int_width))
# Create a numpy array with the wrong dtype
int_arr = np.ctypeslib.as_array(ptr, shape=shape)
# Reinterpret it to the right dtype
return np.frombuffer(int_arr, dtype=dtype).reshape(shape)
GgmlNElem = ctypes.c_int64 * GGML_MAX_DIMS
GgmlNBytes = ctypes.c_uint64 * GGML_MAX_DIMS
def from_file(
ctx: ggml_context_p, file: Path, shape: Tuple[int, ...], dtype: type = np.float32
) -> ggml_tensor_p:
data = np.fromfile(str(file), dtype=dtype).reshape(shape) # type: ignore
return from_numpy(ctx, data)
def _shape_to_ne(shape: Tuple[int, ...]) -> Tuple[int, int, int, int]:
# in GGML ne[0] indicates the contiguous dimension, ie the last one in numpy and torch
ne = shape[::-1]
if len(ne) >= GGML_MAX_DIMS:
return ne # type: ignore
# ne is always of the same length
padding = (1,) * (GGML_MAX_DIMS - len(ne))
return ne + padding # type: ignore
def _compute_nbytes(
ne: Tuple[int, int, int, int], type: ctypes.c_int
) -> Tuple[int, int, int, int]:
nb0 = ggml_type_size(type)
nb1 = nb0 * (ne[0] // ggml_blck_size(type))
nb2 = nb1 * ne[1]
nb3 = nb2 * ne[2]
return (nb0, nb1, nb2, nb3)
def from_numpy(
ctx: ggml_context_p, array: Union[np.ndarray, "torch.Tensor"], name: bytes = b""
) -> Ptr[ggml_tensor]:
if type(array).__name__ == "Tensor":
array = array.numpy()
# Create an empty tensor so we don't allocate memory for the data pointer
gtype = from_numpy_dtype(array.dtype)
tensor_p = ggml_new_tensor_1d(ctx, gtype, 0)
# Fill out the correct dimensions and shape.
tensor_p.contents.n_dims = array.ndim
ne = _shape_to_ne(array.shape)
tensor_p.contents.ne = GgmlNElem(*ne)
tensor_p.contents.nb = GgmlNBytes(*_compute_nbytes(ne, gtype))
# point the tensor data to the content of the numpy array.
tensor_p.contents.data = array.ctypes.data_as(ctypes.c_void_p)
# print(f"array: {array.shape} @0x{array.ctypes.data_as(ctypes.c_void_p)}")
# print(f"tensor_p: {shape(tensor_p)} @0x{tensor_p.contents.data:x}")
# prevent the underlying numpy array to be freed
setattr(tensor_p, "__data", array)
if name:
ggml_set_name(tensor_p, name)
return tensor_p # type: ignore
def ggml_can_mul_mat(t0: ggml_tensor_p, t1: ggml_tensor_p) -> bool:
assert GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"
return (
(t0.contents.ne[0] == t1.contents.ne[0])
and (t1.contents.ne[2] % t0.contents.ne[2] == 0)
and (t1.contents.ne[3] % t0.contents.ne[3] == 0)
)
def nodes(gf: ggml_cgraph) -> Dict[bytes, ggml_tensor_p]:
res = {}
for i in range(gf.n_nodes):
name = gf.nodes[i].contents.name
res[name] = gf.nodes[i]
return res
def leafs(gf: ggml_cgraph) -> Dict[bytes, ggml_tensor_p]:
res = {}
for i in range(gf.n_leafs):
name = gf.leafs[i].contents.name
res[name] = gf.leafs[i]
return res
class NativeObj:
AllocFn = Callable[[], ctypes.c_void_p]
FreeFn = Callable[[ctypes.c_void_p], None]
_cache: Dict[str, Tuple[AllocFn, FreeFn]] = {}
@classmethod
def _init_c_func(cls, kind: str) -> Tuple[AllocFn, FreeFn]:
if kind in cls._cache:
return cls._cache[kind]
alloc_fn = getattr(lib, f"{kind}_alloc")
alloc_fn.argtypes = []
alloc_fn.restype = ctypes.c_void_p
free_fn = getattr(lib, f"{kind}_free")
free_fn.argtypes = [ctypes.c_void_p]
free_fn.restype = None
cls._cache[kind] = (alloc_fn, free_fn)
return (alloc_fn, free_fn)
def __init__(self, kind: str, ptr: ctypes.c_void_p = NULLPTR):
self.kind = kind
alloc_fn, self._free_fn = self._init_c_func(kind)
self.ptr = alloc_fn() if ptr is None else ptr
# print(self)
def free(self) -> None:
if self.ptr is not None:
self._free_fn(self.ptr)
# print(f"freeing {self}")
self.ptr = NULLPTR
def __enter__(self) -> ctypes.c_void_p:
return self.ptr
def __exit__(self, *args: Any) -> None:
self.free()
def __del__(self) -> None:
self.free()
def __repr__(self) -> str:
return f"<{self.kind} native object at 0x{self.ptr:x}>"
def MeasureArena() -> NativeObj:
return NativeObj("ggml_allocr", ggml_allocr_new_measure(GGML_MEM_ALIGN))
def FixedSizeArena(mem_size: int) -> NativeObj:
memory = torch.zeros(mem_size, dtype=torch.uint8)
allocr = ggml_allocr_new(
ctypes.c_void_p(memory.data_ptr()), mem_size, GGML_MEM_ALIGN
)
arena = NativeObj("ggml_allocr", allocr)
# Add a reference from the arena object to the underlying tensor, otherwise it will be freed to early.
setattr(arena, "__memory", memory)
return arena
lib.fairseq2_model_set_inference_ctx.argtypes = [ctypes.c_void_p, ggml_context_p]
def Fairseq2Model() -> NativeObj:
return NativeObj("fairseq2_model")
lib.std_string_alloc.argtypes = [ctypes.c_char_p]
lib.std_string_alloc.restype = ctypes.c_void_p
lib.std_string_free.argtypes = [ctypes.c_void_p]
lib.std_string_free.restype = None
NativeObj._cache["std_string"] = (lib.std_string_alloc, lib.std_string_free)
def CppStr(content: str) -> NativeObj:
c_str = ctypes.create_string_buffer(content.encode("utf-8"))
cpp_str = lib.std_string_alloc(c_str)
return NativeObj("std_string", cpp_str)
lib.load_fairseq2_ggml_file.argtypes = [ctypes.c_void_p, ctypes.c_char_p]
lib.load_fairseq2_ggml_file.restype = ctypes.c_int
def load_fairseq2_ggml_file(model_file: Path) -> NativeObj:
model = Fairseq2Model()
bytes_file = ctypes.create_string_buffer(str(model_file).encode("utf-8"))
err = lib.load_fairseq2_ggml_file(model.ptr, bytes_file)
if err:
raise Exception("Failed to load model")
return model
# lib.unity_audio_encoder_graph.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
# lib.unity_audio_encoder_graph.restype = ctypes.POINTER(ggml_cgraph)
# def unity_audio_encoder_graph(model: NativeObj, tensor: ggml_tensor_p) -> ggml_cgraph_p:
# return lib.unity_audio_encoder_graph(model.ptr, tensor) # type: ignore
# lib.unity_eval.argtypes = [
# ctypes.c_void_p,
# ctypes.c_void_p,
# ctypes.POINTER(ggml_tensor),
# ctypes.c_int,
# ]
# lib.unity_eval.restype = ctypes.POINTER(ggml_cgraph)
# def unity_eval(
# allocr: ctypes.c_void_p, model: NativeObj, tensor: ggml_tensor_p, n_threads: int
# ) -> ggml_cgraph_p:
# return lib.unity_eval(allocr, model.ptr, tensor, n_threads)
_FORWARD_CACHE: Dict[str, Callable[..., ggml_tensor_p]] = {}
def forward(
layer_name: str, model: ctypes.c_void_p, prefix: str, *inputs: ggml_tensor_p
) -> ggml_tensor_p:
fwd: Any = _FORWARD_CACHE.get(layer_name)
if fwd is None:
fwd = getattr(lib, layer_name + "_forward")
num_inputs = len(inputs)
fwd.argtypes = [ctypes.c_void_p, ctypes.c_void_p] + [
ctypes.POINTER(ggml_tensor)
] * num_inputs
fwd.restype = ctypes.POINTER(ggml_tensor)
_FORWARD_CACHE[layer_name] = fwd
with CppStr(prefix) as std_prefix:
return fwd(model, std_prefix, *inputs) # ignore: type[no-any-return]
def build_and_compute(
ctx: ggml_context_p, tensor: ggml_tensor_p, num_threads: int = 1, dump: Union[bool, str] = False
) -> ggml_cgraph:
gf = ggml_build_forward(tensor)
need_alloc = tensor.contents.data == NULLPTR
if need_alloc:
alloc = FixedSizeArena(1024 * 1024 * 1024 * 2)
ggml_allocr_alloc_graph(alloc.ptr, ctypes.pointer(gf))
setattr(tensor, "__data", alloc)
if dump:
if dump == True:
dump = f"dot/{sys._getframe(1).f_code.co_name}"
ggml_graph_dump_dot(ctypes.pointer(gf), NULLPTR, dump.encode("ascii"))
# subprocess.run(["dot", "-Tsvg", "-O", dump])
ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), num_threads)
return gf
@c_fn(lib)
def causal_attention_mask(
ctx: ggml_context_p, seqs: Ptr[ggml_tensor]
) -> Ptr[ggml_tensor]:
...
@c_fn(lib)
def ggml_slice(
ctx: ggml_context_p,
a: Ptr[ggml_tensor],
axis: int,
start: ctypes.c_int64,
end: ctypes.c_int64,
) -> Ptr[ggml_tensor]:
...
@c_fn(lib)
def ggml_flatten_1d(
ctx: ggml_context_p, a: Ptr[ggml_tensor], dim: int
) -> Ptr[ggml_tensor]:
return a
@c_fn(lib)
def ggml_unflatten_1d(
ctx: ggml_context_p, a: Ptr[ggml_tensor], dim: int, num_el: int
) -> Ptr[ggml_tensor]:
return a
@c_struct
@dataclasses.dataclass
class SequenceGeneratorOptions:
beam_size: int
min_seq_len: int = 5
soft_max_seq_len_a: float = 1.0
soft_max_seq_len_b: int = 200
hard_max_seq_len: int = 1024
len_penalty: float = 1.0
unk_penalty: float = 0.0
normalize_scores: bool = True
mem_mb: int = 256
@c_struct
@dataclasses.dataclass
class SequenceGeneratorJob:
opts: SequenceGeneratorOptions
prefix_seq: Ptr[ggml_tensor]
pad_idx: int
unk_idx: int
bos_idx: int
eos_idx: int
num_threads: int = 1
@c_struct
class Hypothesis:
seq: Ptr[ggml_tensor]
"""The generated sequence."""
score: float
"""The score of the hypothesis."""
step_scores: Ptr[ggml_tensor]
"""The score of each individual sequence step."""
@c_fn(lib)
def generate_sequence(
model: ctypes.c_void_p,
job: Ptr[SequenceGeneratorJob],
encoder_output: Ptr[ggml_tensor],
encoder_padding_mask: Ptr[ggml_tensor],
result_ctx: ggml_context_p,
) -> Ptr[Hypothesis]:
...
@c_fn(lib)
def _testing_return_hypothesis_ptr(ctx: ggml_context_p) -> Ptr[Hypothesis]:
return Ptr()
@c_fn(lib)
def fairseq2_model_layer_config_int(model: ctypes.c_void_p, name: bytes) -> int:
return -1
@c_fn(lib.fairseq2_kv_cache_alloc)
def _fairseq2_kv_cache_alloc(
model: ctypes.c_void_p, ctx: ctypes.c_void_p, beam_size: int, max_seq_len: int
) -> None:
pass
@c_fn(lib.fairseq2_kv_cache_reset)
def _fairseq2_kv_cache_reset(model: ctypes.c_void_p) -> None:
pass
@contextlib.contextmanager
def fairseq2_kv_cache_alloc(
model: ctypes.c_void_p, kv_cache_size: int, beam_size: int, max_seq_len: int
) -> Iterator[None]:
memory = torch.zeros(kv_cache_size, dtype=torch.uint8)
ctx = ggml_init(
params=ggml_init_params(
mem_size=kv_cache_size,
mem_buffer=ctypes.c_void_p(memory.data_ptr()),
no_alloc=False,
)
)
_fairseq2_kv_cache_alloc(model, ctx, beam_size, max_seq_len)
try:
yield
finally:
_fairseq2_kv_cache_reset(model)
ggml_free(ctx)
@c_fn(lib)
def fairseq2_spm_tokenize(
model: ctypes.c_void_p, text: bytes, out: Ptr[ggml_tensor]
) -> None:
pass
@c_fn(lib)
def fairseq2_spm_detokenize(
model: ctypes.c_void_p, tensor: Ptr[ggml_tensor], out: ctypes.Array[ctypes.c_char]
) -> ctypes.c_size_t:
return 0