-
Notifications
You must be signed in to change notification settings - Fork 18
/
Inspyrenet_Rembg.py
77 lines (66 loc) · 2.23 KB
/
Inspyrenet_Rembg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from PIL import Image
import torch
import numpy as np
from transparent_background import Remover
from tqdm import tqdm
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# Convert PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
class InspyrenetRembg:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"torchscript_jit": (["default", "on"],)
},
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "remove_background"
CATEGORY = "image"
def remove_background(self, image, torchscript_jit):
if (torchscript_jit == "default"):
remover = Remover()
else:
remover = Remover(jit=True)
img_list = []
for img in tqdm(image, "Inspyrenet Rembg"):
mid = remover.process(tensor2pil(img), type='rgba')
out = pil2tensor(mid)
img_list.append(out)
img_stack = torch.cat(img_list, dim=0)
mask = img_stack[:, :, :, 3]
return (img_stack, mask)
class InspyrenetRembgAdvanced:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"torchscript_jit": (["default", "on"],)
},
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "remove_background"
CATEGORY = "image"
def remove_background(self, image, torchscript_jit, threshold):
if (torchscript_jit == "default"):
remover = Remover()
else:
remover = Remover(jit=True)
img_list = []
for img in tqdm(image, "Inspyrenet Rembg"):
mid = remover.process(tensor2pil(img), type='rgba', threshold=threshold)
out = pil2tensor(mid)
img_list.append(out)
img_stack = torch.cat(img_list, dim=0)
mask = img_stack[:, :, :, 3]
return (img_stack, mask)