diff --git a/ReadMe.md b/ReadMe.md index 29988cf..e5d44c9 100644 --- a/ReadMe.md +++ b/ReadMe.md @@ -9,6 +9,11 @@ in Python, with added test coverage. Find the full [documentation on Read-the-Docs][docs]. +[![citation](https://zenodo.org/badge/263433787.svg)](https://zenodo.org/badge/latestdoi/263433787) +[![license](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) +[![release](https://img.shields.io/pypi/v/kde-diffusion.svg)](https://pypi.python.org/pypi/kde-diffusion) +[![downloads](https://pepy.tech/badge/kde-diffusion)](https://pepy.tech/project/kde-diffusion) +[![documentation](https://readthedocs.org/projects/kde-diffusion/badge/?version=latest)](https://kde-diffusion.readthedocs.io/en/latest/?badge=latest) [paper]: https://dx.doi.org/10.1214/10-AOS799 [kde1d]: https://mathworks.com/matlabcentral/fileexchange/14034 @@ -16,8 +21,3 @@ Find the full [documentation on Read-the-Docs][docs]. [docs]: https://kde-diffusion.readthedocs.io -[![release](https://img.shields.io/pypi/v/kde-diffusion.svg)](https://pypi.python.org/pypi/kde-diffusion) -[![downloads](https://pepy.tech/badge/kde-diffusion)](https://pepy.tech/project/kde-diffusion) -[![citation](https://zenodo.org/badge/263433787.svg)](https://zenodo.org/badge/latestdoi/263433787) -[![license](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) -[![documentation](https://readthedocs.org/projects/kde-diffusion/badge/?version=latest)](https://kde-diffusion.readthedocs.io/en/latest/?badge=latest) diff --git a/docs/index.md b/docs/index.md index 2e570a0..6032898 100644 --- a/docs/index.md +++ b/docs/index.md @@ -43,15 +43,9 @@ The bandwidth selection is what makes kernel density estimation a non-parametric method, so that we avoid making — possibly misguided — assumptions about the nature of the data. - -[1]: https://dx.doi.org/10.1214/10-AOS799 -[2]: https://mathworks.com/matlabcentral/fileexchange/14034 -[3]: https://mathworks.com/matlabcentral/fileexchange/17204 -[4]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html -[5]: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html -[6]: https://kdepy.readthedocs.io -[7]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html - +[![citation](https://zenodo.org/badge/263433787.svg)](https://zenodo.org/badge/latestdoi/263433787) +[![license](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) +[![source](https://img.shields.io/github/stars/John-Hennig/KDE-diffusion?style=social)](https://github.com/John-Hennig/KDE-diffusion) ```{toctree} :hidden: @@ -61,3 +55,11 @@ usage implementation api ``` + +[1]: https://dx.doi.org/10.1214/10-AOS799 +[2]: https://mathworks.com/matlabcentral/fileexchange/14034 +[3]: https://mathworks.com/matlabcentral/fileexchange/17204 +[4]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html +[5]: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html +[6]: https://kdepy.readthedocs.io +[7]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html diff --git a/pypi.md b/pypi.md new file mode 100644 index 0000000..a0dcc65 --- /dev/null +++ b/pypi.md @@ -0,0 +1,19 @@ +Kernel density estimation via diffusion in 1d and 2d. + +Provides the fast, adaptive kernel density estimator based on linear +diffusion processes for one-dimensional and two-dimensional input data +as outlined in the [2010 paper by Botev et al.][paper] The reference +implementation for [1d][kde1d] and [2d][kde2d], in Matlab, was provided +by the paper's first author, Zdravko Botev. This is a re-implementation +in Python, with added test coverage. + +Find the full [documentation on Read-the-Docs][docs]. + +[![citation](https://zenodo.org/badge/263433787.svg)](https://zenodo.org/badge/latestdoi/263433787) +[![license](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) +[![source](https://img.shields.io/github/stars/John-Hennig/KDE-diffusion?style=social)](https://github.com/John-Hennig/KDE-diffusion) + +[paper]: https://dx.doi.org/10.1214/10-AOS799 +[kde1d]: https://mathworks.com/matlabcentral/fileexchange/14034 +[kde2d]: https://mathworks.com/matlabcentral/fileexchange/17204 +[docs]: https://kde-diffusion.readthedocs.io diff --git a/pyproject.toml b/pyproject.toml index 136dd0b..e213a8b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -10,7 +10,7 @@ requires = ['NumPy', 'SciPy'] requires-python = '>=3.6' license = 'MIT' home-page = 'https://pypi.org/project/KDE-diffusion' -description-file = 'ReadMe.md' +description-file = 'pypi.md' keywords = 'kernel density estimation, statistics' classifiers = [ 'Development Status :: 5 - Production/Stable',