-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_asag.py
96 lines (82 loc) · 3.54 KB
/
eval_asag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig, Trainer, TrainingArguments
from transformers.trainer_utils import set_seed
from argparse import ArgumentParser
from src.datasets.dataset import load_data
from src.datasets import SemEvalDataSet
from src.util import compute_asag_metrics
from src.util.utils import load_asag_model
parser = ArgumentParser()
parser.add_argument("-s", "--seed", type=int, default='42')
parser.add_argument("-d", "--dataset", type=str, help="Name of the dataset (scientisbank, beetle, kn1)")
parser.add_argument("-m", "--model", type=str, help="Model name (Hugging Face model hub name)")
parser.add_argument("-n", "--name", type=str, help="Name under which the model should be saved")
parser.add_argument("-l", "--max_length", type=int, default='512', help="Max length of input sequences")
args = parser.parse_args()
seed = args.seed
name = args.name
model = args.model
dataset = args.dataset
max_length = args.max_length
set_seed(seed)
if dataset == 'kn1':
config = AutoConfig.from_pretrained(model, num_labels=3,
id2label={0: 'Incorrect', 1: 'Partially correct', 2: 'Correct'},
label2idd={'Incorrect': 0, 'Partially correct': 1, 'Correct': 2})
else:
config = AutoConfig.from_pretrained(model, num_labels=3,
id2label={0: 'contradictory', 1: 'incorrect', 2: 'correct'},
label2idd={'contradictory': 0, 'incorrect': 1, 'correct': 2})
asag_model = AutoModelForSequenceClassification.from_pretrained(model, config=config)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
asag_model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model)
print('Model loaded', flush=True)
train_data = load_data(dataset, 'train')
test_data_ua = load_data(dataset, 'ua')
test_data_uq = load_data(dataset, 'uq')
test_set_ua = SemEvalDataSet(sent_pairs=test_data_ua['sent_pairs'], scores=test_data_ua['scores'], tokenizer=tokenizer,
max_length=max_length)
test_set_uq = SemEvalDataSet(sent_pairs=test_data_uq['sent_pairs'], scores=test_data_uq['scores'], tokenizer=tokenizer,
max_length=max_length)
if dataset == 'scientsbank':
test_data_ud = load_data(dataset, 'ud')
test_set_ud = SemEvalDataSet(sent_pairs=test_data_ud['sent_pairs'], scores=test_data_ud['scores'],
tokenizer=tokenizer,
max_length=max_length)
print('Data loaded: ' + dataset, flush=True)
log_dir = './logs/{}/{}'.format(dataset, name)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
training_args = TrainingArguments(
output_dir=log_dir,
learning_rate=2e-05,
num_train_epochs=24,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
gradient_accumulation_steps=4,
dataloader_num_workers=2,
dataloader_drop_last=True,
fp16=True,
seed=seed,
warmup_steps=1024,
weight_decay=0.01,
save_strategy="epoch"
)
trainer = Trainer(
model=asag_model,
args=training_args,
compute_metrics=compute_asag_metrics
)
# 5. eval model
print('Evaluation UA', flush=True)
metrics = trainer.evaluate(test_set_ua)
print(metrics, flush=True)
print('Evaluation UQ', flush=True)
metrics = trainer.evaluate(test_set_uq)
print(metrics, flush=True)
if dataset == 'scientsbank':
print('Evaluation UD', flush=True)
metrics = trainer.evaluate(test_set_ud)
print(metrics, flush=True)