-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_counterfactuals.py
119 lines (97 loc) · 4.55 KB
/
create_counterfactuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from typing import List
from argparse import ArgumentParser
import pandas as pd
import torch
from timeit import default_timer as timer
from datetime import timedelta
from transformers import AutoTokenizer
from transformers.trainer_utils import set_seed
from src import ASAG, Editor, Masker
from src.explanation import Counterfactual, GradientAttribution
from src.datasets.dataset import load_data, filter_out_correct_answers
from src.util.utils import load_asag_model, load_editor_model, GENERATORS
from src.datasets.utils import semeval_keys, kn1_keys, split_in_answer_types
from src.util.utils import GENERATORS
from tqdm import tqdm
parser = ArgumentParser()
parser.add_argument("-s", "--seed", type=int, default='42')
parser.add_argument("-d", "--dataset", type=str, help="Name of the dataset (scientisbank, beetle, kn1)")
parser.add_argument("-l", "--split", type=str, help="Name of the data split")
parser.add_argument("-a", "--asag_model", type=str, help="Name of the asag base model")
parser.add_argument("-e", "--editor_model", type=str, help="Name of the editor base model")
parser.add_argument("-i", "--iterations", type=int, default=4, help="Number of edit rounds")
# Get arguments
args = parser.parse_args()
dataset = args.dataset
asag_model_name = args.asag_model
editor_model_name = args.editor_model
split = args.split
edit_rounds = args.iterations
seed = args.seed
set_seed(seed)
# Load data split
data = load_data(dataset, split, add_questions=True)
#print(data)
#Filter out correct answers
data = filter_out_correct_answers(data, with_questions=True)
#print(data)
# Split data into answer types
ic_answers_sample, pc_answers_sample = split_in_answer_types(data, dataset=dataset)
if dataset != 'kn1':
keys = semeval_keys
label_0 = 'contradictory'
label_1 = 'incorrect'
target_label = 'correct'
else:
keys = kn1_keys
label_0 = 'Incorrect'
label_1 = 'Partially correct'
target_label = 'Correct'
# Initialize ASAG
asag_device = editor_device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#asag_device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
asag_model = load_asag_model(dataset, asag_device)
asag_tokenizer = AutoTokenizer.from_pretrained(asag_model_name)
asag = ASAG(tokenizer=asag_tokenizer, model=asag_model, device=asag_device, keys=keys)
# Initialize Editor
editor_tokenizer = AutoTokenizer.from_pretrained(editor_model_name)
# Initialize Masker
masker = Masker()
# Initialize Attribution Method
intGrad = GradientAttribution(asag_tokenizer, asag_device, asag_model)
def generate_counterfactual(generator, answers, label):
counterfactuals = []
for _, pair in enumerate(tqdm(answers)):
question = pair[0]
ref = pair[1]
stud = pair[2]
counterfactual = generator.find(stud=stud, reference=ref, target_label=label, iterations=edit_rounds)
counterfactuals.append((question, ref, stud, counterfactual))
return counterfactuals
# Generate counterfactuals for each editor model
print("Dataset: " + dataset + " " + split, flush=True)
for model, path in GENERATORS[dataset].items():
if model == 'paraphrase':
continue
print(model, flush=True)
print(path, flush=True)
editor_model = load_editor_model(path, editor_device)
editor = Editor(tokenizer=editor_tokenizer, editor_model=editor_model, device=editor_device, editor_type=model)
cf_generator = Counterfactual(asag, editor, masker=masker, attr_method=intGrad)
ic_res = generate_counterfactual(cf_generator, ic_answers_sample, target_label)
print("IC counterfactuals created", flush=True)
ic_df = pd.DataFrame(ic_res, columns=['Question', 'Ref.', 'Stud.', 'CF'])
print('save examples', flush=True)
if dataset == 'kn1':
ic_df.to_csv('./evaluation_new/{}/incorrect/{}_{}_ic_cfs.csv'.format(dataset, model, split), index=False)
else:
ic_df.to_csv('./evaluation_new/{}/contradictory/{}_{}_co_cfs.csv'.format(dataset, model, split), index=False)
pc_res = generate_counterfactual(cf_generator, pc_answers_sample, target_label)
print("PC counterfactuals created", flush=True)
ic_df = pd.DataFrame(ic_res, columns=['Question', 'Ref.', 'Stud.', 'CF'])
pc_df = pd.DataFrame(pc_res, columns=['Question', 'Ref.', 'Stud.', 'CF'])
print('save examples', flush=True)
if dataset == 'kn1':
pc_df.to_csv('./evaluation_new/{}/partially_correct/{}_{}_pc_cfs.csv'.format(dataset, model, split), index=False)
else:
pc_df.to_csv('./evaluation_new/{}/incorrect/{}_{}_ic_cfs.csv'.format(dataset, model, split), index=False)