-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattack_utils.py
executable file
·213 lines (179 loc) · 7.57 KB
/
attack_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from assets.models import irse, ir152, facenet
import torch
import cv2
from advertorch.utils import NormalizeByChannelMeanStd
import torch.nn.functional as F
import torch.nn as nn
def preprocess(im, mean, std, device):
if len(im.size()) == 3:
im = im.transpose(0, 2).transpose(1, 2).unsqueeze(0)
elif len(im.size()) == 4:
im = im.transpose(1, 3).transpose(2, 3)
mean = torch.tensor(mean).to(device)
mean = mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
std = torch.tensor(std).to(device)
std = std.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
im = (im - mean) / std
return im
def read_img(data_dir, mean, std, device):
img = cv2.imread(data_dir)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255
img = torch.from_numpy(img).to(torch.float32).to(device)
img = preprocess(img, mean, std, device)
return img
class Net(torch.nn.Module):
def __init__(self, test_models, decoder=None):
super(Net, self).__init__()
self.test_models = test_models
self.decoder = decoder
self.norm = NormalizeByChannelMeanStd([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]).cuda()
def forward(self, z, xT=None, T=1):
if xT is None: # input is images
x = z
else: # input are latent codes
#x = self.decoder.render(xT, z, T)
x = self.decoder.render(z, xT, T)
x = self.norm(x)
features = []
for model_name in self.test_models.keys():
input_size = self.test_models[model_name][0]
fr_model = self.test_models[model_name][1]
source_resize = F.interpolate(x, size=input_size, mode='bilinear')
emb_source = fr_model(source_resize)
features.append(emb_source)
# avg_feature = torch.mean(torch.stack(features), dim=0)
avg_feature = features
return avg_feature
def cos_simi(emb_1, emb_2):
return torch.mean(torch.sum(torch.mul(emb_2, emb_1), dim=1) / emb_2.norm(dim=1) / emb_1.norm(dim=1))
def Cos_Loss(source_feature, target_feature):
cos_loss_list = []
for i in range(len(source_feature)):
cos_loss_list.append(1 - cos_simi(source_feature[i], target_feature[i].detach()))
# print(1 - cos_simi(source_feature[i], target_feature[i]))
cos_loss = torch.mean(torch.stack(cos_loss_list))
return cos_loss
class OhemCELoss(nn.Module):
def __init__(self, thresh, n_min, ignore_lb=255, *args, **kwargs):
super(OhemCELoss, self).__init__()
self.thresh = -torch.log(torch.tensor(thresh, dtype=torch.float)).cuda()
self.n_min = n_min
self.ignore_lb = ignore_lb
self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none')
def forward(self, logits, labels):
N, C, H, W = logits.size()
loss = self.criteria(logits, labels).view(-1)
loss, _ = torch.sort(loss, descending=True)
if loss[self.n_min] > self.thresh:
loss = loss[loss>self.thresh]
else:
loss = loss[:self.n_min]
return torch.mean(loss)
def load_test_models(model_names):
test_models = {}
device='cuda'
for model_name in model_names:
if model_name == 'ir152':
test_models[model_name] = []
test_models[model_name].append((112, 112))
fr_model = ir152.IR_152((112, 112))
fr_model.load_state_dict(torch.load('./assets/models/ir152.pth'))
fr_model.to(device)
fr_model.eval()
test_models[model_name].append(fr_model)
if model_name == 'irse50':
test_models[model_name] = []
test_models[model_name].append((112, 112))
fr_model = irse.Backbone(50, 0.6, 'ir_se')
fr_model.load_state_dict(torch.load('./assets/models/irse50.pth'))
fr_model.to(device)
fr_model.eval()
test_models[model_name].append(fr_model)
if model_name == 'facenet':
test_models[model_name] = []
test_models[model_name].append((160, 160))
fr_model = facenet.InceptionResnetV1(num_classes=8631, device=device)
fr_model.load_state_dict(torch.load('./assets/models/facenet.pth'))
fr_model.to(device)
fr_model.eval()
test_models[model_name].append(fr_model)
if model_name == 'mobile_face':
test_models[model_name] = []
test_models[model_name].append((112, 112))
fr_model = irse.MobileFaceNet(512)
fr_model.load_state_dict(torch.load('./assets/models/mobile_face.pth'))
fr_model.to(device)
fr_model.eval()
test_models[model_name].append(fr_model)
return test_models
class Net(torch.nn.Module):
def __init__(self, test_models, decoder=None):
super(Net, self).__init__()
self.test_models = test_models
self.decoder = decoder
self.norm = NormalizeByChannelMeanStd([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]).cuda()
def forward(self, z, xT=None, T=1):
if xT is None: # input is images
x = z
else: # input are latent codes
# x = self.decoder.render(xT, z, T)
x = self.decoder.render(z, xT, T)
# print(x.size())
x = self.norm(x)
features = []
for model_name in self.test_models.keys():
input_size = self.test_models[model_name][0]
fr_model = self.test_models[model_name][1]
source_resize = F.interpolate(x, size=input_size, mode='bilinear')
emb_source = fr_model(source_resize)
features.append(emb_source)
# avg_feature = torch.mean(torch.stack(features), dim=0)
avg_feature = features
# print(len(avg_feature), avg_feature[0].size())
return avg_feature
class Net_fast(torch.nn.Module):
def __init__(self, test_models, decoder=None):
super(Net_fast, self).__init__()
self.test_models = test_models
self.decoder = decoder
self.norm = NormalizeByChannelMeanStd([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]).cuda()
# self.model = self.decoder.ema_model
def forward(self, z, xT=None, T=1, t=None, predict=True, is_last=False):
if xT is None: # input is images
x = z
x_pred = z
else: # input are latent codes
# x = self.decoder.render(xT, z, T)
# x = self.decoder.render(z, xT, T)
x, x_pred = self.decoder.render(z, xT, T, True, t, is_last)
# print(x.size())
# x = out["pred_xstart"]
# x_pred = out["sample"]
if predict:
# if is_last:
# x_norm = self.norm(x_pred)
# else:
# x_norm = self.norm(x)
x_norm = self.norm(x)
# x_norm = x_pred
features = []
for model_name in self.test_models.keys():
input_size = self.test_models[model_name][0]
fr_model = self.test_models[model_name][1]
source_resize = F.interpolate(x_norm, size=input_size, mode='bilinear')
emb_source = fr_model(source_resize)
features.append(emb_source)
# avg_feature = torch.mean(torch.stack(features), dim=0)
avg_feature = features
# print(len(avg_feature), avg_feature[0].size())
return avg_feature, x_pred, x
else:
return x_pred, x
def encode_all(self, z, x, T=1):
xT = self.decoder.encode_stochastic_all(x, z, T)
return xT
# def encode_t(self, z, x, T=1):
#
# xT = self.decoder.encode_stochastic_all(x, z, T)
#
# return xT