forked from talreiss/Mean-Shifted-Anomaly-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
119 lines (94 loc) · 4.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
from sklearn.metrics import roc_auc_score
import torch.optim as optim
import argparse
import utils
from tqdm import tqdm
import torch.nn.functional as F
def contrastive_loss(out_1, out_2):
out_1 = F.normalize(out_1, dim=-1)
out_2 = F.normalize(out_2, dim=-1)
bs = out_1.size(0)
temp = 0.25
# [2*B, D]
# cat: concatenates the given sequence of seq tensors in the given dimension
out = torch.cat([out_1, out_2], dim=0)
# [2*B, 2*B]
sim_matrix = torch.exp(torch.mm(out, out.t().contiguous()) / temp)
mask = (torch.ones_like(sim_matrix) - torch.eye(2 * bs, device=sim_matrix.device)).bool()
# [2B, 2B-1]
sim_matrix = sim_matrix.masked_select(mask).view(2 * bs, -1)
# compute loss
pos_sim = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temp)
# [2*B]
pos_sim = torch.cat([pos_sim, pos_sim], dim=0)
loss = (- torch.log(pos_sim / sim_matrix.sum(dim=-1))).mean()
return loss
def train_model(model, train_loader, test_loader, train_loader_1, device, args):
model.eval()
auc, feature_space = get_score(model, device, train_loader, test_loader)
print('Epoch: {}, AUROC is: {}'.format(0, auc))
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=0.00005)
center = torch.FloatTensor(feature_space).mean(dim=0)
center = F.normalize(center, dim=-1)
center = center.to(device)
for epoch in range(args.epochs):
running_loss = run_epoch(model, train_loader_1, optimizer, center, device)
print('Epoch: {}, Loss: {}'.format(epoch + 1, running_loss))
auc, _ = get_score(model, device, train_loader, test_loader)
print('Epoch: {}, AUROC is: {}'.format(epoch + 1, auc))
# torch.save(model.state_dict(), 'state_dict_MSAD_norm_train_norm_test.pt')
def run_epoch(model, train_loader, optimizer, center, device):
total_loss, total_num = 0.0, 0
for ((img1, img2), _) in tqdm(train_loader, desc='Train...'): # tqdm = progress bar
img1, img2 = img1.to(device), img2.to(device)
optimizer.zero_grad()
out_1 = model(img1)
out_2 = model(img2)
out_1 = out_1 - center
out_2 = out_2 - center
center_loss = ((out_1 ** 2).sum(dim=1).mean() + (out_2 ** 2).sum(dim=1).mean())
loss = contrastive_loss(out_1, out_2) + center_loss
loss.backward()
optimizer.step()
total_num += img1.size(0)
total_loss += loss.item() * img1.size(0)
return total_loss / (total_num)
def get_score(model, device, train_loader, test_loader):
train_feature_space = []
with torch.no_grad():
for (imgs, labels) in tqdm(train_loader, desc='Train set feature extracting'):
imgs = imgs.to(device)
features = model(imgs)
train_feature_space.append(features)
train_feature_space = torch.cat(train_feature_space, dim=0).contiguous().cpu().numpy()
test_feature_space = []
test_labels = []
with torch.no_grad():
for (imgs, labels) in tqdm(test_loader, desc='Test set feature extracting'):
imgs = imgs.to(device)
features = model(imgs)
test_feature_space.append(features)
test_labels.append(labels)
test_feature_space = torch.cat(test_feature_space, dim=0).contiguous().cpu().numpy()
test_labels = torch.cat(test_labels, dim=0).cpu().numpy()
distances = utils.knn_score(train_feature_space, test_feature_space)
auc = roc_auc_score(test_labels, distances)
return auc, train_feature_space
def main(args):
print('Dataset: {}, Normal Label: {}, LR: {}'.format(args.dataset, args.label, args.lr))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
model = utils.Model()
model = model.to(device)
train_loader, test_loader, train_loader_1 = utils.get_loaders(dataset=args.dataset, label_class=args.label, batch_size=args.batch_size)
train_model(model, train_loader, test_loader, train_loader_1, device, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', default='custom')
parser.add_argument('--epochs', default=100, type=int, metavar='epochs', help='number of epochs')
parser.add_argument('--label', default=0, type=int, help='The normal class')
parser.add_argument('--lr', type=float, default=1e-5, help='The initial learning rate.')
parser.add_argument('--batch_size', default=64, type=int)
args = parser.parse_args()
main(args)